一般情况下,在没有什么阻挡的情况下,污染物是从污染源开始向四面八方以发射状传播的,此处只考虑地形对重金属污染元素的传播的影响,我们知道,当距离污染源越远,重金属的浓度就越低,还有就是重金属元素向上与向下传播有很大的区别,向下传播因坡度的原因大于向上传播,所以在距离污染源距离相同距离的点,因高度差的不同,浓度也会不同,据此可以知道重金属污染元素的浓度分布是成山峰状的。
5.32建立模型-黑箱模型 结合分析与实际,某受重金属污染的地区的受影响情况与此地离污染源的位置有关,即跟污染源与被污染点的空间位置有关。我们发现,此处是不能根据理论从纯数学的角度建立出浓度与地理位置之间的数学公式模型的。因此我们考虑了黑箱模型,把采样点的空间坐标看作是输入,浓度是输出,求出浓度与空间坐标之间的关系,让后根据浓度分布特征找出污染源位置。
利用1stopt软件进行快速拟合出砷浓度与x、y坐标的关系( 准牛顿法(BFGS) + 通用全局优化法)
N=p1+p2/(1+((x-p3)/p4)^2)+p5/(1+((y-p6)/p7)^2)+p8/((1+((x-p3)/p4)^2)*(1+((y-p6)/p7)^2))
Np1p2p5p8
xp32yp62xp32yp621()1()(1())*(1())p4p7p4p7以及砷的浓度与海拔高度的关系(准牛顿法(BFGS) + 通用全局优化法)
N=p1+p2/Ln(x)+p3/(Ln(x))^2+p4/(Ln(x))^3+p5/(Ln(x))^4+p6/(Ln(x))^5+p7/(Ln(x))^6+p8/(Ln(x))^7+p9/(Ln(x))^8+p10/(Ln(x))^9
从拟合出函数的形式可以看出砷的浓度与x、y坐标的关系以及砷的浓度与海拔高度的关系都不是线性的,而是非线性的。根据快速拟合出公式的形式,通过三个变量的非线性组合得到拟合公式形式:
N=(p1+p2/(1+((x1-p3)/p4)^2)+p5/(1+((x2-p6)/p7)^2)+p8/((1+((x1-p3)/p4)^2)*(1+((x2-p6)/p7)^2)))*(p8+p9/Ln(x3)+p10/(Ln(x3))^2+p11/(Ln(x3))^3+p12/(Ln(x3))^4+p13/(Ln(x3))^5+p14/(Ln(x3))^6+p15/(Ln(x3))^7+p16/(Ln(x3))^8+p17/(Ln(x3))^9);
p2p5p8)*x1p32x2p62x1p32x2p621()1()(1()*(1()))p4p7p4p7p9p10p11p12p13p14p15(p8(镉、铬、234567Ln(x3)Ln(x3)Ln(x3)Ln(x3)Ln(x3)Ln(x3)Ln(x3)p16p17)89Ln(x3)Ln(x3)N(p1铜、镍、铅、锌共用模型)
由于都是重金属,镉、铬、铜、镍、铅、锌通常条件下同位固体,所以它们的传播特征具有相似性,故而此数学模型可以共用,但系数应是不同的汞通常是液体,故而分开分析。根据所给测量数据利用1stopt拟合,求出各种重金属元素对应的系数关系如表三:
3
各重金属元素对应系数的值 系数 As Cd Cr Cu Hg Ni Pb Zn (μg/g) (ng/g) (μg/g) (μg/g) (ng/g) (μg/g) (μg/g) (μg/g) P1 0.632036.930832.632127.40-438.847.60742.18113.7926240570744875020052333653225593149858856854997537518 39 95 21499558 08920747999638 2 4 3 P2 85.056410.90822098.127.55-2601.04.701-7729-250.73786357225457185650116561306980028735169.09229029508 31 07 52743401 89567354597831 1 1 91 P3 41.68258.8227-1143362541.-349.591278.-49682524.42372754656193626.25004847483242662323934686125683704 7 568 63362936 66233.47544728 6 4 62 P4 0.2851-2.5242254.071480.5-68.448-9.07665129.980210446516101466138361290663156178821088.68871360897726 581 29 30997645 47032570008092 3 07 2 P5 0.1219-98443455.40959990029108030.10619.16353.04093841.07260872360276.7674.61114621780857514668126351 553 62 0466547 97688772619961 4 24 5 P6 -0.10513155965.69822-5186-2397720.0699982.0223788.618077801.0882895450979.92923.868960556896362347655368244 87 15838825 68744298660474 97 2 P7 0.013981622.86.486401902212215040.73315.84-1132.76308046896654807035.69152.8622669071476564014112800038 28 6087837 997873891912553 8 58 1 P8 569.47290.4521248.66631.61601.71289.2849.55362.8562842943028661860848686433213168442096851403584224 39 88 3313051 41783898548321 4 1 6 P9 -4340.-7.7942-23504.-1064-39588.-2288-1301-15853526098320369124031173.4099585354.87988.9675.78372805 078 939 85648819 222718988081216 27 59 51 P10 14340.502.483175581.71289395534.1590.7047920172465036056886857046218.1550843042342835.15622.92643916 56 08 071818 79655661913218 4 2 1 4
P11 -25771-464326.51491.19165882202 914 26449.2447815942 2353072.3025611 -625757.927941519 P12 P13 -143641818019.825605.6223161264 24 2213.37964044344 1687.18568824174 -161979086.470635 292806234.837909 P14 P15 P16 -915.7434422898824813.561990043 77 137.14-1300947684218045.045089 733 P17 -232207.257888069 902266.3336856719728.07746 280205 334706.160.319337327002231 013546 -175303-47682.4523341.21706 7180336 -31573.1675444660583.874224 357349 -12653144166.6421154.962024 721996 3458868.-281860096283 43.593334002 -1992627.55116948 4804366.24115506 -1317610.95640376 -21402482.2370489 51139894.064665 -47513021.7269599 15227309.9932977 29031.9558159978 -24431.7091308135 -525881.203622467 2203423.14568816 -3906787.48836199 -175240.63195221 734564.675099667 -5340933.07390497 17303198.8927081 -13123695.2736446 336228-35658.987820748.406 2646413 -115215431763.8734437.14151 384594 -14840753.9628026 74980630.8434739 -306941104.986548 1081562556.81801 -2870680312.39462 4612324857.52243 -3220350689.82112 表三 根据方程模型以及系数得出各中重金属元素污染特性的方程。由于重金属污染元素的传播特性,可知重金属污染物浓度的空间分布是成山峰状的,并且是平缓变化的,对方程的各个变量求偏导数求出峰值,但是峰值点不一定是污染源所在位置,峰值点有可能是污染物低洼地带淤积而成的,需要对照图形确定污染源。
快速拟合浓度与x、y坐标的关系结果如下: Function: z = p1+p2/(1+((x-p3)/p4)^2)+p5/(1+((y-p6)/p7)^2)+p8/((1+((x-p3)/p4)^2)*(1+((y-p6)/p7)^2))
Algorithms: 准牛顿法(BFGS) + 通用全局优化法
Root of Mean Square Error (RMSE): 3959.13228587004 Sum of Square Error (SSE): 5000238377.78892 Correlation Coef. (R): 0.52481811628865
5
R-Square: 0.275434055184767
Determination Coef. (DC): 0.275434054610111 快速拟合浓度与海拔高度的关系结果如下: Function: y = p1+p2/Ln(x)+p3/(Ln(x))^2+p4/(Ln(x))^3+p5/(Ln(x))^4+p6/(Ln(x))^5+p7/(Ln(x))^6+p8/(Ln(x))^7+p9/(Ln(x))^8+p10/(Ln(x))^9
Algorithms: 准牛顿法(BFGS) + 通用全局优化法
Root of Mean Square Error (RMSE): 39.0233714384807 Sum of Square Error (SSE): 485780.702377776 Correlation Coef. (R): 0.454771907843737 R-Square: 0.206817488163832
Determination Coef. (DC): 0.206784087377359
快速拟合汞浓度与x、y坐标的函数形式1stopt程序: Parameter n,x,y;
DataFile “G\\shuju.xls[sheet1[A2:C320]]” Function: z (p1+p2*x+p3*y+p4*y^2+p5*y^3)/(1+p6*x+p7*x^2+p8*x^3+p9*y+p10*y^2)
Algorithms: 准牛顿法(BFGS) + 通用全局优化法
Root of Mean Square Error (RMSE): 1170.0311027303 Sum of Square Error (SSE): 436702317.252653 Correlation Coef. (R): 0.706326291474004 R-Square: 0.498896830027419
Determination Coef. (DC): 0.482835813060998 快速拟合汞浓度与海拔高度的函数形式程序: Parameter n,x,y;
DataFile “G\\shuju.xls[sheet2[A2:B320]]” 结果:
Function: y = p1/(1+p1*p2*x)+p3/(1+p3*p4*x) Algorithms: 准牛顿法(BFGS) + 通用全局优化法
Root of Mean Square Error (RMSE): 1539.83313340027 Sum of Square Error (SSE): 756376459.110817 Correlation Coef. (R): 0.347075145024739 R-Square: 0.120461156293944
Determination Coef. (DC): 0.10426210019505
= 6
因篇幅问题不能全部显示,请点此查看更多更全内容