您好,欢迎来到尚佳旅游分享网。
搜索
您的当前位置:首页逻辑学 归纳逻辑

逻辑学 归纳逻辑

来源:尚佳旅游分享网
第六章 归纳逻辑

我们前面讲的词项逻辑和命题逻辑都属于演绎逻辑,它们讨论的各种推理都是演绎推理。演绎推理的一个重要特征是前提与结论之间有必然的逻辑联系,即只要前提真,并且推理形式有效,则结论必真。因此,演绎推理是必然性推理。与演绎逻辑不同,归纳逻辑研究的通常是不具有必然性的推理,即当前提真时结论不必然真的推理。这类推理属于非演绎推理,包括枚举归纳推理、因果归纳推理、概率归纳推理、类比推理等。归纳是与演绎相对的。对演绎有两种不同的理解,一是从一般到个别,二是必然地推出。前一种理解是较为狭窄的,很难概括人们运用演绎推理的实际,因而已为现代逻辑所不取。相应地,对归纳也有两种不同的理解,一是从个别到一般,二是或然地推出。归纳逻辑通常取的是其第二种含义。但习惯上常又按第一种含义来解释归纳推理。枚举归纳推理、因果归纳推理、概率归纳推理之归纳就具有这样的含义。因时间所限,我们仅介绍枚举归纳推理、因果归纳推理和类比推理。

第一节 枚举归纳推理

一、什么是枚举归纳推理

枚举归纳推理是由一类事物中的若干对象具有(或不具有)某种属性,概括出关于这类事物的一般性结论的推理。

在进行枚举归纳推理时,前提中考察的可以是一类事物的全部对象,也可以只是一类事物的一部分对象。根据前提中所考察的对象是否穷尽,枚举归纳推理又分为穷举归纳推理和非穷举归纳推理。

二、穷举归纳推理

(一)什么是穷举归纳推理

穷举归纳推理又可称为完全归纳推理,它是通过对一类事物中的每一对象逐一进行考察,由它们分别具有(或不具有)某种属性,推出这类事物都具有(或

·1·

不具有)这种属性的一般性结论的推理。例如:

穷举归纳推理的形式可表示为:

S1具有(或不具有)P属性 S2具有(或不具有)P属性 ……

Sn具有(或不具有)P属性 S1、S2……S n是S类的全部对象 所有S都具有(或不具有)P属性

穷举归纳推理是我们在日常生活和工作中经常运用的。 例:

曾参:放诸四海而皆准(儒家的孝道)

(二)穷举归纳推理的特点

穷举归纳推理有三个特点:

一是从个别到一般,即从个别性认识出发推出一个一般性的结论。正是在这个意义上,我们称之为归纳。

二是穷举,即通过考察一类事物的全部对象来得出结论。

三是前提与结论有必然联系,即只要前提都真则结论必真。在这一点上,它类似于演绎推理。

在运用穷举归纳推理时,只要真正做到了穷举,即无遗漏地考察了一类事物的全部对象,并且每个前提都是真实的,就能得出可靠的结论。

但穷举归纳推理也有其局限性。当一类事物数量无限多,或者数量不断增加的时候,人们就无法运用穷举归纳推理得出结论了。另外,即使所考察的一类事物在数量上是有限的,人们也可能会因实践上受到某种而无法一一进行考察,从而不能运用穷举归纳推理作出结论。在这些情况下,就需要运用非穷举归纳推理了。

例:

(1)佛教《百喻经》:尝一个买一个

·2·

(2)《吕氏春秋》:尝一脔肉,而知一镬之味,一鼎之调。 (3)破坏性试验

三、非穷举归纳推理

(一)什么是非穷举归纳推理

非穷举归纳推理又称为不完全归纳推理,它是只考察一类事物中的部分对象,由它们具有(或不具有)某种属性,推出这类事物都具有(或不具有)某种属性的推理。

非穷举归纳推理的形式可表示为:

S1具有(或不具有)P属性 S2具有(或不具有)P属性 ……

Sn具有(或不具有)P属性 S1、S2……Sn是S类的一部分对象 所有S都具有(或不具有)P属性 例:

长寿的音乐指挥

(二)非穷举归纳推理的特点

非穷举归纳推理也有三个特点:

一是从个别到一般,这一点与穷举归纳推理相同。

二是非穷举,即只考察了一类事物中的一部分对象,而不是全部对象。这一点与穷举归纳推理不同。

三是前提与结论无必然联系。这一点也与穷举归纳推理不同。显然,由一类事物中的一部分对象具有(或不具有)某种属性,不能必然得出这类事物中的全部对象都是如此。

·3·

与穷举归纳推理相比,非穷举归纳推理得出的结论往往是不可靠的,常常会因在以后的考察中遇到相反的情况而被推翻。

例:

(1)白色的天鹅

(2)红色的血(蚯蚓的血为玫瑰色,虾、螃蟹、螺、蚌、蜘蛛的血为青绿色,蜗牛的血为蓝色,扇螅虫的血忽红忽绿)

因此,运用非穷举归纳推理得出的结论,常常只被当作一种有待证明的假设,当作人们进一步研究的出发点。

例:

(1)歌德猜想

(2)华罗庚:《数学归纳法》(猜球)

(三)如何提高非穷举枚举归纳推理结论的可靠性

为了提高非穷举归纳推理结论的可靠程度,在运用这种推理时,必须注意以下三点:

第一,考察的事物的数量要尽可能多些。一般来说,一类事物中出现某种情形的事例越多,这种情形就越可能具有普遍性,因而结论就越可靠。

例:

费尔马的猜想

第二,考察的范围要尽可能广些。考察的范围越广,对象之间的差别越大,漏掉相反情况的可能性就越小,结论的可靠性程度就越高。

例:

麻雀

第三,要注重考察那些有较大可能出现反例的场合。如果在最容易出现相反情况的场合中都没有发现例外情况,则说明某类事物遇到例外情况的可能性极小,其结论的可靠程度也就较高。

例:

动物的血

·4·

在运用非穷举归纳推理时,如果不注意做到以上三点,只是考察了很小范围内的少数个别事例,又没有注重考察那些有较大可能出现反例的场合,就轻率作出结论,就容易犯“轻率概括”或“以偏概全”的错误。

例:

(1)索要“纪念品”的青年 (2)代表购物

第二节 因果归纳推理

一、什么是因果归纳推理

因果归纳推理是探求现象间因果联系的归纳推理。

因果联系是现象之间的一种普遍联系。世界上的任何现象都是由其他现象引起的,而任何现象一旦发生,又必然会引起其他现象。这种引起和被引起的关系,就是因果联系。其中,引起其他现象的现象称为原因,被引起的现象称为结果。因果联系是复杂多样的,认识现象间的因果联系往往是一个十分复杂的过程。

19世纪英国逻辑学家穆勒(又译为弥尔),在总结前人思想成果的基础上概括出探求现象间因果联系的五种方法,即求同法、求异法、求同求异并用法、共变法和剩余法。这五种方法被称为“穆勒五法”。这些方法是探求现象间因果联系的最基本的方法,在各门科学中是普遍运用的。它们都具有从个别到一般的特点,所得出的结论都具有或然性。运用这些方法的过程,实际上是进行推理的过程。我们这里说的因果归纳推理,就是指运用这些方法进行的推理,我们分别称之为求同法推理、求异法推理、求同求异并用法推理、共变法推理和剩余法推理

二、求同法推理

(一)什么是求同法推理

求同法推理是根据在被研究现象出现的若干场合中只有一个相关先行情况是共同的,推出这个唯一共同的相关先行情况是被研究现象的原因的推理。所谓相关先行情况就是先于被研究现象出现的,可能是被研究现象的原因的情况。结

·5·

果是由原因引起的,原因总是先于结果,所以,寻找某现象的原因,只能到先于它出现的情况,即先行情况中去寻找;但先行情况是非常多的,我们需要注意的只是其中那些可能成为被研究现象的原因的情况,即相关先行情况。求同法推理,以及后面要讲的求异法推理、求同求异并用法推理和共变法推理,就是从相关先行情况中确定被研究现象的原因的推理方法。

求同法推理的形式可表示为:

场合(1)有A、B、C,并且有a 场合(2)有A、D、E,并且有a 场合(3)有A、F、G,并且有a ……

A是a的原因

这里的A、B、C、D、E、F、G等表示相关先行情况,a表示被研究现象。这个形式表明,在被研究现象a出现的若干场合中,只有相关先行情况A在这些场合中都出现,除此以外再无其他情况在这些场合中都出现,由此可得出A是a的原因。可见,求同法是一种异中求同的方法。

例:

(1)甲状腺肿大病流行的原因

(2)发霉的花生与癌症(1960年英国某农场用发霉的花生饲养的10万只火鸡在几个月内患癌症死去)

求同法推理的结论具有或然性。因为在每一场合中,实际存在的先行情况是很多的,我们在考虑相关先行情况时,有可能把无关的先行情况当成有关的,或把真正有关的先行情况忽略掉。

(二)运用求同法推理时需注意的问题

在运用求同法推理时,需注意以下两点:

第一,在被研究现象出现的若干场合中,只能有一个相关先行情况相同。 第二,进行比较的场合应尽可能多些。进行比较的场合越多,就越有可能排除那些不相干的共同情况,因而结论就越可靠。

·6·

三、求异法推理

(一)什么是求异法推理

求异法推理是根据在被研究现象出现的场合(可称为正面场合)和被研究现象不出现的场合(可称为反面场合)只有一个相关先行情况是不同的(即在前一场合中有这个情况存在,而在后一场合中这个情况则不存在),推出这个唯一不同的相关先行情况是被研究现象的原因的推理。

求异法推理的形式可表示为:

场合(1)有A、B、C,并且有a 场合(2)无A而有B、C,并且无a A是a的原因

这一形式表明,在被研究现象a出现的场合(1)中,有相关先行情况A出现,而在研究现象a不出现的场合(2)中,相关先行情况A则不出现,除此以外,这两个场合的其他相关先行情况(B、C)完全相同,由此可得出A是a的原因。可见,求异法是一种同中求异的方法。

例:

(1)优良麦种与小麦增产 (2)低温与长寿(大白鼠试验)

求异法推理的结论也具有或然性。在分析正反两个场合所具有的不同的相关先行情况时,人们有可能把某个无关的先行情况当成有关的,而将真正有关的情况忽略掉,从而得出错误的结论。不过,求异法推理一般是以严格的比较为基础的,而且往往与实验相联系,总的来说比求同法推理的结论要可靠。

(二)运用求异法推理时需注意的问题

在运用求异法推理时,需注意以下两点:

第一,在正反两个场合中,只能有一个相关先行情况不同,其他相关先行情况必须完全相同。在把正反两个场合进行比较时,既不能把无关的不同情况当成有关的,也不能把有关的不同情况忽略掉。

第二,运用求异法推理得出的被研究现象的原因,可能只是被研究现象的部分原因,而不是全部原因。

·7·

四、求同求异并用法推理

(一)什么是求同求异并用法推理

求同求异并用法推理是根据在被研究现象出现的若干场合中只有一个相关先行情况是共同的,而在被研究现象不出现的若干场合中则都不存在这个相关先行情况,推出这个相关先行情况是被研究现象的原因的推理。

求同求异并用法推理的形式可表示为:

场合(1)有A、B、C,并且有a 场合(2)有A、D、E,并且有a 场合(3)有A、F、G,并且有a ……

场合(1)无A而有B、M,并且无a 场合(2)无A而有E、O,并且无a 场合(3)无A而有C、D,并且无a ……

A是a的原因

这一形式表明,求同求异并用法推理须考察两组不同的场合,一组是被研究现象a出现的场合,可称为正事例组,另一组是被研究现象a不出现的场合,可称为负事例组。在被研究现象a出现的各个场合中,只有一个相关先行情况A是共同的,而在a不出现的各个场合中,A都不出现,由此可得出A是a的原因。可以说,求同求异并用法是一种既求同也求异的方法。

例:

(1)豆类植物为什么能使土壤增加氮 (2)唱歌对肺部和心脏功能的影响

从求同求异并用法推理的形式可以看出,这种推理方法实际是两次求同,一次求异,即先在正事例组中求同,再在负事例组中求同(把A不出现作为共同

·8·

情况),最后,比较正事例组和负事例组的差异而得出结论。但求同求异并用法推理并不是求同法推理和求异法推理的相继运用,因为求同求异并用法推理的求异与求异法推理的求异是不同的。求异法推理是把两个场合加以比较(运用求异法推理时,虽然可以有两组事物,但每一组事物是被整个地当作一个场合),它要求这两个场合除了前者有A而后者无A外,其他相关先行情况完全相同;求同求异并用法推理则是把两组场合加以比较,它只要求前一组场合都有A,而后一组场合都无A,并不要求除此以外两组场合中的其他相关先行情况完全相同。因此,求同求异并用法推理是一种的因果归纳推理,而不是简单地把求同法推理和求异法推理相加在一起组合而成的。

求同求异并用法推理当然也具有或然性,但它显然比求同法推理得出的结论要可靠。

(二)运用求同求异并用法推理时需注意的问题

在运用求同求异并用法推理时,需注意以下两点:

第一,构成正事例组和负事例组的场合都应尽可能多些。构成正事例组和负事例组的场合愈多,就愈能排除偶然因素的影响,因而结论的可靠程度就愈高。

第二,负事例组的各个场合与正事例组的各个场合应有较多的相似性。相似形越多,结论的可靠性就越高。

五、共变法推理

(一)什么是共变法推理

共变法推理是根据在被研究现象发生变化(数量或程度上的变化)的若干场合只有一个相关先行情况发生了相应的变化,推出这个唯一发生了变化的相关先行情况是被研究现象的原因的推理。

共变法推理的形式可表示为:

场合(1)A变为A1而B、C不变,并且a变为a1 场合(2)A变为A2而B、C不变,并且a变为a2 场合(3)A变为A3而B、C不变,并且a变为a3

·9·

……

A是a的原因

这个形式表明,在被研究现象a 发生了变化(变为a1、a2、a3)的各个场合中,只有相关先行情况A发生了变化(变为A1、A2、A3),其他情况(B、C)均保持不变,由此可得出A是a的原因。共变法可以说是“从共变中求因果”的方法。

例:

(1)气温与果蝇的寿命 (2)瞳孔的变化

求同法推理、求异法推理以及求同求异并用法推理,都是从现象的出现或不出现来判明因果联系的,是对事物的定性分析,而共变法却是从现象变化的数量或程度来判明因果联系的,是定量考察。共变法推理可以克服求异法推理运用中出现的困难。运用求异法推理时,要求反面场合要消除某个现象,但在科学实验中,有一些因素,如摩擦、温度、压力等是无法消除或很难消除的,这时就不能运用求异法推理,而要改用共变法推理。

共变法推理的结论也具有或然性。共变法推理是以对现象之间的共变关系的分析为基础的,但有共变关系的现象并不一定有因果联系。如果把某个发生了变化的无关的先行情况当成有关的,就会得出错误的结论。

(二)运用共变法推理时需注意的问题

在运用共变法推理时应注意以下几个问题:

第一,在被研究现象发生变化的各个场合中,只能有一个相关先行情况发生了变化。

第二,现象之间的共变关系往往是有限度的,超出了一定限度,原有的共变关系就不再存在。因此,运用共变法推理得到的被研究现象的原因,往往只是被研究现象在一定限度内向某个方向变化的原因。

六、剩余法推理

(一)什么是剩余法推理

剩余法推理是根据某一复合情况(即由若干情况构成的复杂情况)是某一复

·10·

合现象(即由若干现象构成的复杂现象)的原因,并且复合情况中的一部分情况是复合现象中的一部分现象的原因,推出复合情况中的剩余部分是复合现象中剩余部分的原因的推理。

剩余法推理的形式可表示为:

复合情况F(A,B,C)是复合现象f(a,b,c)的原因 B是b的原因 C是c的原因 A是a的原因

这里的F(A,B,C)表示由情况A、B、C构成的一个复合情况,f(a,b,c)表示由现象a、b、c构成的一个复合现象。这个形式表明,由复合情况F(A,B,C)是复合现象f(a,b,c)的原因,并且作为前者的一部分的B、C分别是作为后者的一部分的b、c的原因,可得出前者的剩余部分A是后者的剩余部分a的原因。剩余法可以看作是“由余果去求余因”的方法。

例:

氩的发现

与前面几种因果归纳推理相比,剩余法推理更具有特殊性。它不是在相关先行情况中寻求被研究现象的原因,而是在已知有因果联系的复合情况和复合现象之间,通过排除已确定的有因果联系的部分,寻求剩余部分的原因。

(二)运用剩余法推理时需注意的问题

在运用剩余法推理时,需注意以下两点:

第一,复合情况中被排除的部分不能是复合现象中剩余部分的原因。如果复合情况中的B、C不但是复合现象中的b、c的原因,而且也是复合现象中的a的原因,就不能得出复合情况中的A是复合现象中的a的原因。

第二,复合现象剩余部分的原因不一定是一个单一的情况,而有可能是较复杂的情况。如果遇到这样的情况,就需要作逐步深入的分析,直到找出被研究现象的全部原因为止。

例:

镭的发现

·11·

以上分别介绍了五种因果归纳推理。这些推理的结论都具有或然性。在日常认识和科学研究中,人们往往把各种不同的因果归纳推理结合起来运用,以提高结论的可靠性。

第三节 类比推理

一、什么是类比推理

类比推理是根据两个或两类对象在一些属性上相同,并且已知其中一个或一类对象还具有某一属性,从而推出另一对象也具有这种属性的推理。

类比推理的形式可表示为:

A对象有属性a、b、c、d B对象有属性a、b、c B对象也有属性d

这个形式中的a、b、c是两个对象共同具有的属性,d是已知A对象具有而推出B对象也具有的属性。

例:

(1)黄岩柑橘 (2)鲁班发明锯 (3)地球上找到氦

类比推理与前面介绍的几种归纳推理有所不同,它不是从个别性知识推出一般性知识的推理,而是从个别性知识推出个别性知识,或从特殊性知识推出特殊性知识的推理。

类比推理的结论也具有或然性。由两个或两类对象在一些属性上相同,不能必然推出它们在其他属性上也相同。

二、如何提高类比推理结论的可靠性

要提高类比推理结论的可靠性,在运用类比推理时就需注意以下问题: 第一,进行类比的两个(或两类)对象的相同属性和推出属性之间应有较密

·12·

切的联系。这种联系越是密切,越是具有必然性,结论的可靠程度就越高。相反,联系越是不密切,越是不具有必然性,结论的可靠程度就越低。

例:

月球上可能有生命吗

第二,结论涉及的对象(类比推理形式中的B对象)不能具有与推出属性不相容的属性。如果存在这种不相容的属性,则结论不能成立。

第三,进行类比的两个(或两类)对象具有的相同属性应尽可能多些。一般来说,进行类比的两个对象具有的相同属性越多,结论的可靠性程度就越高。

例:

动物试验

运用类比推理时,如果不注意以上几点,而是仅仅根据两个事物少量的、表面的相似就进行类比,相同属性与推出属性毫不相干,就会犯“机械类比”的错误。

例:

(1)上帝存在的“证明” (2)油与皇历

(3)诗人刘征:《漫天类比》

三、类比推理的作用

类比推理主要具有以下作用:

第一,类比推理是进行科学探索的重要工具。在科学研究中运用类比推理,可以使人们受到启发,产生丰富的想象力和创造力。在科学史上,许多重大的发现、发明都是通过运用类比推理提出的。

例:

惠更斯提出光的波动说,卢瑟福的行星模型,维纳的控制论,动物细胞核的发现,扣诊法的发明,船的发明,车的发明 第二,类比推理是模拟试验法的根据。

模拟试验法是科学理论研究、工程技术设计、经济管理等活动中广泛使用的

·13·

方法。它通过建立认识对象的模型来对认识对象进行研究,根据与被模拟对象相似的试验模型具有的特性来推断被模拟对象具有的特性。

在进行模拟试验时,实际上运用了这样一个类比推理:

试验模型具有属性a、b、c、d 被模拟对象具有属性a、b、c 被模拟对象具有属性d 第三,类比推理是仿生学的基础。

仿生学是60年代发展起来的一门科学。它专门研究如何模仿生物系统的原理(形态、结构、功能等)来制造相应的技术系统。

仿生学虽历史不长,但仿生却是自古以来就有的。人自动物界脱离后,一直在模仿各种生物的形态、构造和机能,来制造各种各样的生产工具和生活用具。

例:

黄帝发明车,鲁班发明锯,伏特发明电池,飞机的发明

仿生学诞生后,人类在仿生方面获得了迅速发展,取得了许多重要成果。 例:

(1)航空航海:偏振光天文罗盘,水母耳风暴预测仪 (2)建筑:薄壳结构的建筑物 (3)自动控制:电脑和机器人

(4)军事:电子鸽眼,电子鹰眼,电子蛙眼,电子警犬 (5)体育仿生:蛙泳,鱼跃,蹲踞式起跑,空翻加转体 仿生活动是建立在这样一个类比推理基础之上的:

生物原形具有属性a、b、c、d 技术模型具有属性a、b、c 技术模型具有属性d

·14·

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- shangjiatang.cn 版权所有 湘ICP备2022005869号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务