搜索
您的当前位置:首页正文

02326操作系统自考复习资料

来源:尚佳旅游分享网


02326操作系统 第一章引论 第二章计算机系统结构简介 第三章处理器管理 第四章存储管理 第五章文件管理 第六章设备管理

第七章进程同步与进程通信 第八章死锁 第九章实验 1、操作系统具有层次结构 层次结构最大特点是整体问题局部化来优化系统,提高系统的正确性、高效性使系统可维护、可移植。

主要优点是有利于系统设计和调试;主要困难在于层次的划分和安排。 2、多道程序设计系统转 “多道程序设计系统”简称“多道系统”,即多个作业可同时装入主存储器进行运行的系统。在多道系统中一点必须的是系统须能进行程序浮动。所谓程序浮动是指程序可以随机地从主存的一个区域移动到另一个区域,程序被移动后仍不影响它的执行。多道系统的好处在于提高了处理器的利用率;充分利用外围设备资源;发挥了处理器与外围设备以及外围设备之间的并行工作能力。可以有效地提高系统中资源的利用率,增加单位时间内的算题量,从而提高了吞吐率。 3、程序浮动 若作业执行时,被改变的有效区域依然能正确执行,则称程序是可浮动的。 4、进程 进程是一个程序在一个数据集上的一次执行。由定义知进程关键组成是程序、数据集。

进程通过一个控制块来被系统所指挥,因此进程由程序、数据集和进程控制块三部分组成。进程控制块是进程存在的唯一标志.进程是要执行的,据这点可分将进程的状态分为等待态然后是就绪态最后是运行态。

进程的基本队列也就是就绪队列和等待队列,因为进程运行了,也就用不上排队了,也就没有运行队列了。 5、重定位 重定位即把逻辑地址转换成绝对地址。 重定位的方式有“静态重定位”和“动态重定位”两种。 (1)静态重定位 在装入一个作业时,把作业中的指令地址和数据地址全部转换成绝对地址。这种转换工作是在作业开始前集中完成的,在作业执行过程中无需再进行地址转换。所以称为“静态重定位”。 (2)动态重定位 在装入一个作业时,不进行地址转换,而是直接把作业装到分配的主区域中。在作业执行过程中,每当执行一条指令时都由硬件的地址转换机构转换n成绝对地址。这种方式的地址转换是在作业执行时动态完成的,所以称为动态重定位。

动态重定位由软件(操作系统)和硬件(地址转换机构)相互配合来实现。动态重定位的系统支持“程序浮动”,而静态重定位则不能。 6、单分区管理 除操作系统占用的一部分存储空间外,其余的用户区域作为一个连续的分区分配给用户使用。

固定分区的管理分区数目、大小固定设置上、下限寄存器逻辑地址+下限地址→绝对地址。可变分区的管理

可变分区管理方式不是把作业装入到已经划分好的分区中,而是在作业要求装入主存储器时,根据作业需要的主存量和当时的主存情况决定是否可以装入该作业。

分区数目大小不定设置基址、限长寄存器 逻辑地址+基址寄存器的值→绝对地址。基址值≤绝对地址≤基址值+限长值 页式存储管理 主存储器分为大小相等的“块”。程序中的逻辑地址进行分“页”,页的大小与块的大小一致。用页表登记块页分配

情况逻辑地址的页号部分→页表中对

应页号的起始地址→与逻辑地址的页内地址部分拼成绝对地址。由页表中的标志位验证存取是否合法,根据页表长度判断是否越界。

段存储管理程序分段每一段分配一个连续的主存区域,作业的各段可被装到不相连的几个区域中。设置段表记录分配情况逻辑地址中的段号→查段表得到本段起始地址+段内地址→绝对地址由段表中的标志位验证存取是否合法,根据段表长度判断是否越界。 页式虚拟存储管理类似页式管理将作业信息保存在磁盘上部分装入主存类似页式管理:逻辑地址的页号部分→页表中对应页号的起始地址→与逻辑地址的页内地址部分拼成绝对地址。 若该页对应标志为0,则硬件形成“缺页中断”先将该页调入主存类似页式管理。段式虚拟存储管理类似段式管理将作业信息保存在磁盘上部分装入主存类似段式管理。

7、存储介质是指可用来记录信息的磁带、硬磁盘组、软磁盘片、卡片等。存储介质的物理单位定义为“卷”。 存储设备与主存储器之间进行信息交换的物理单位是块。块定义为存储介质上存放的连续信息所组成的一块区域。 逻辑上具有完整意义的信息集合称为“文件”。

用户对文件内的信息按逻辑上独立的含义划分的信息单位是记录,每个单位为一个逻辑记录。 8、文件的分类 文件可以按各种方法进行分类: 按用途系统文件、库文件、用户文件 按保护级别可执行文件、只读文件、读写文件

按信息流向输入文件、输出文件、输入输出文件

按存放时限临时文件、永久文件、档案文件

按设备类型磁盘文件、磁带文件、卡片文件、打印文件

按文件组织结构逻辑文件、物理文件(顺序文件、链接文件、索引文件) 9、文件结构 文件结构分为逻辑结构和物理结构转 逻辑结构

用户构造的文件称为文件的逻辑结构。如用户的一篇文档、一个数据库记录文件等。逻辑文件有两种形式:流式文件和记录式文件。 流式文件是指用户对文件内信息不再划分的可独立的单位,如我们的word文件,图片文件等。整个文件是以顺序的一串信息组成。

记录式文件:是指用户对文件内信息按逻辑上独立的含义再划分信息单位,每个单位为一个逻辑记录。记录式文件可以存取的最小单位是记录项。每个记录可以独立存取。这个在数据库中我们学得比较多,容易理解。 2、物理结构 由文件系统在存储介质上的文件构造方式称为文件的物理结构。物理结构有: 1)顺序结构:在磁盘上就是一块接着一块地放文件。逻辑记录的顺序和磁盘顺序文件块的顺序一致。顺序文件的最大优点是存取速度快(可以连续访问)。 2)链接结构:把磁盘分块,把文件任意存入其中,再用指针把各个块按顺序链接起来。这样所有空闲块都可以被利用,在顺序读取时效率较高但需要随机存取时效率低下(因为要从第一个记录开始读取查找)。 3)索引结构:磁盘不分块,文件的逻辑记录任意存放在磁盘中,通过一张“索引表”指示每个逻辑记录存放位置。这样,访问时根据索引表中的项来查找磁盘中的记录,既适合顺序存取记录,也可以随机存取记录,并且容易实现记录的增删和插入,所以索引结构被广泛应用。 10、记录的成组与分解 1、记录的成组与分解的原因:由于磁盘块的大小是预先划分好的,大小固定,而逻辑记录的大小是用户文件性质

决定的,不一定和块大小一致。

2、记录的成组:把若干个逻辑记录存入一个块的工作称为“记录的成组”。每块中逻辑记录的个数称“块因子”。 3、记录的分解:这是记录成组的一个逆过程。经程是先从磁盘中找到记录所在的块,并将本块读入主存缓冲区,再从缓冲区取出所需要的记录送到用户工作区。如果用户所需的记录已经在缓冲区中,则不需要启动外设读块信息,这也可以提高系统工作效率。 11、作业和作业步 1、作业:我们把用户要求计算机系统处理的一个问题称为一个“作业” 2、作业步:完成作业的每一个步聚称为“作业步”。 12、作业控制方式 1、作业控制方式,包括批处理方式和交互方式。 批处理控制方式:也称脱机控制方式或自动控制方式。就是一下子交待任务,执行过程中不再干涉。

批处理作业:采用批处理控制方式的作业称为“批处理作业”。 批处理作业进入系统时必须提交:源程序、运行时的数据、用作业控制语言书写的作业控制说明书。

交互控制方式:也称联机控制方式。就是一步一步地交待任务。做好了一步,再做下一步。

2、批处理作业的控制(领会)

1)按用户提交的作业控制说明书控制作业的执行。

2)一个作业步的工作往往由多个进程的合作来完成。

3)一个作业步的工作完成后,继续下一个作业步的作业,直至作业执行结束。 3、交互式作业的管理(领会) 1)交互式作业的特点:交互式作业的特点主要表现在交互性上,它采用人机对话的方式工作。 2)交互式作业的控制:一种是操作使用接口,另一种是命令解释执行。 操作使用接口包括操作控制命令,菜单技术,窗口技术。

命令的解释执行一类是操作系统中的相应处理模块直接解释执行;另一类必须创建用户进程去解释执行。 13、死锁 若系统中存在一组进程(两个或多个进程),它们中的每一个进程都占用了某种资源而又都在等待其中另一个进程所占用的资源,这种等待永远不能结束,则说系统出现了“死锁”。或说这组进程处于“死锁”状态。 14、相关临界区 1、并发进程中与共享变量有关的程序段称为“临界区”.并发进程中涉及到相同变量的那些程序段是相关临界区。 2、对相关临界区的管理的基本要求。 对相关临界区管理的基本原则是:如果有进程在相关临界区执行,则不让另一个进程进入相关的临界区执行。 15、进程同步的含义:进程的同步是指并发进程之间存在一种制约关系,一个进程的执行依赖另一个进程的消息,当一个进程没有得到另一个进程的消息时应等待,直到消息到达才被唤醒。 16、中断:一个进程占有处理器运行时,由于自身或自界的原因使运行被打断,让操作系统处理所出现的事件到适当的时候再让被打断的进程继续运行,这个过程称为“中断”。 17、中断机制 在它执行程序的时候,如果有另外的事件发生(比如用户又打开了一个程序)那么这时候就需要由计算机系统的中断机制来处理了。

中断机制包括硬件的中断装置和操作系统的中断处理服务程序。 18、中断响应(硬件即中断装置操作) 处理器每执行一条指令后,硬件的中断位置立即检查有无中断事件发生,若有中断事件发生,则暂停现行进程的执行,而让操作系统的中断处理程序占用处理器,这一过程称为“中断响应”。 19、中断屏蔽

中断屏蔽技术是在一个中断处理没有结束之前不响应其他中断事件,或者只

响应比当前级别高的中断事件。

20、存储保护:防止主存储器稳中有降个程序的相互干扰和保护稳中有降区域内的信息安全,限定各程序在规定的主存区域内执行,称为存储保护。 特权指令:即可能影响系统安全的指令。全文是为保护输入输出的完整性,把“启动I/O”等的一类可能影响系统安全的指令定义为特权指令。

优点在于:这种方式不但保证安全地使用外围设备,正确地传送信息,而且可减少用户为启动设备而必须了解外围设备特性以及启动等工作,大大方便了用户。 21、文件的保护与保密 1)文件的保护是防止文件被破坏。文件的保密是防止文件被窃取。 2)文件的保护措施: 可以采用树形目录结构、存取控制表和规定文件使用权限的方法。

3)文件的常用保密措施:隐藏文件目录、设置口令和使用密码(加密)等。 22、UNIX系统结构 UNIX的层次结构。 UNIX可以分为内核层和外壳层两部分。//内核层是UNIX是核心。/外壳层由shell解释程序(即为用户提供的各种命令。)、支持程序设计的各种语言(如C、PASCAL和BASIC等)、编译程序和解释程序、实用程序和系统库等组成。 UNIX系统的主要特点。 短小精悍//简洁有效//易移植//可扩充//开放性 23、线程的概念 线程是进程中可独立执行的子任务,一个进程中可以有一个或多个线程,每个线程都有一个唯一的标识符。 进程与线程有许多相似之处,所以线程又称为轻型进程。

支持线程管理的操作系统有Mach,OS/2,WindowsNT,UNIX等。 24、通道命令 通道命令规定设备的操作,每一种通道命令规定了设备的一种操作,通道命令一般由命令码/数据。

主存地址/传送字节个数及标志码等部分组成。 通道程序 是一组通道命令规定通道执行一次输入输出操作应做的工作,这一组命令就组成了一个通道程序。 25、管道机制 把第一条命令的输出作为第二条命令的输入,如此进行连接的技术。 26、操作系统概述 移动技术 移动技术是把某个作业移到另一处主存空间去(在磁盘整理中我们应用的也是类似的移动技术)。最大好处是可以合并一些空闲区。 对换技术 把一个分区的存储管理技术用于系统时,可采用对换技术把不同时工作的段轮流装入主存储区执行 27、UNIX系统的存储管理 1、对换(Swapping)技术:这就是前面我们所学的虚拟存储器在UNIX中的应用。磁盘上设置开辟一个足够大的区域,为对换区。当内存中的进程要扩大内存空间,而当前的内存空间又不能满足时,则可把内存中的某些进程暂换出到对换区中,在适当的时候又可以把它们换进内存。因而,对换区可作为内存的逻辑扩充,用对换技术解决进程之间的内存竞争。

UNIX对内存空间和对换区空间的管理都采用最先适应分配算法。 2、虚拟页式存储管理技术。UNIX把进程的地址空间划分成三个功能区段:系统区段、进程控制区段、进程程序区段。系统区段占用系统空间,系统空间中的程序和数据常驻内存。其余两个区段占用进程空间,是进程中非常驻内存部分。

通过页表和硬件的地址转换机构完成虚拟地址和物理地址之间的转换。 28、UNIX系统的I/O系统 缓冲技术:这个技术就是前面我们学

过的虚拟设备(SPOOL技术)在UNIX中的实际应用UNIX采用缓冲技术实现设备的读写操作。 29、进程的调度 我们使用不同的调度是为了优化,具体说来是提高处理器利用率,增大吞吐量,减少等待时间,缩短响应时间。 30、页式存储管理中为什么要设置页表和快表? 在页式存储管理中,主存被分成大小相等的若干块,同时程序逻辑地址也分成与块大小一致的若干页,这样就可以按页面为单位把作业的信息放入主存,并且可以不连续存放,为了表示逻辑地址中的页号与主存中块号的对应关系,就需要为每个作业建立一张页表。 页表一般存放在主存中,当要按给定的逻辑地址访问主存时,要先访问页表,计算出绝对地址,这样两次访主存延长了指令执行周期,降低了执行速度,而设置一个高速缓冲寄存器将页表中的一部分存放进去,这部分页表就是快表,访问主存时二者同时进行,由于快表存放的是经常使用的页表内容,访问速度很快,这样可以大大加快查找速度和指令执行速度。 31、虚拟存储器 虚拟存储器是为“扩大”主存容量而采用的一种设计技巧,就是它只装入部分作业信息来执行,好处在于借助于大容量的辅助存储器实现小主存空间容纳大逻辑地址空间的作业。

虚拟存储器的容量由计算机的地址结构(地址总线位数)决定。如32位的,则最大的虚存容量为2^32=4294967296B=4GB。

叙述页式虚拟存储器的基本原理。 页式虚拟存储器是在页式存储的基础上实现虚拟存储器的,其工作原理是: 首先把作业信息作为副本存放在磁盘上,作业执行时,把作业信息的部分页面装入主存,并在页表中对相应的页面是否装入主存作出标志。

作业执行时若所访问的页面已经在主存中,则按页式存储管理方式进行地址转换,得到绝对地址,否则产生“缺页中断”由操作系统把当前所需的页面装入主存。

若在装入页面时主存中无空闲块,则由操作系统根据某种“页面调度”算法选择适当的页面调出主存换入所需的页面。 32、死锁的防止(简单应用) 1、系统出现死锁必然出现以下情况: 1)互斥使用资源 2)占有并等待资源 3)不可抢夺资源 4)循环等待资源 2、死锁的防止策略:破坏产生死锁的条件中的一个就可以了。

常用的方法有:静态分配、按序分配、抢夺式分配3种。 33、死锁的避免(简单应用) 1、死锁的避免是让系统处于安全状态,来避免发生死锁。

安全状态:如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于“安全状态”。 34、银行算法是怎样避免死锁的: 计算机银行家算法是通过动态地检测系统中资源分配情况和进程对资源的需求情况,在保证到少有一个进程能得到所需要的全部资源,从而能确保系统处于安全状态进,才把资源分配给申请者,从而避免了进程共享资源时系统发生死锁。 采用银行家算法时为进程分配资源的方式: 1)对每一个首次申请资源的进程都要测试该进程对资源的最大的需求量。如果系统现存资源可以满足他的最大需求量,就按当前申请量为分配资源。否则推迟分配。 2)进程执行中继续申请资源时,先测试该进程已占用资源数和本次申请资源总数有没有超过最大需求量。超过就不分配。

若没有超过,再测试系统现存资源是否满足进程尚需的最大资源量,满足则按

当前申请量分配,否则也推迟分配。

总之,银行家算法要保证分配资源时系统现存资源一定能满足至少一个进程所需的全部资源。 35、中断的响应 中断响应(硬件即中断装置操作) 处理器每执行一条指令后,硬件的中断位置立即检查有无中断事件发生,若有中断事件发生,则暂停现行进程的执行,而让操作系统的中断处理程序占用处理器,这一过程称为“中断响应”。 中断响应过程中,中断装置要做以下三项工作: 1)是否有中断事件发生 2)若有中断发生,保护断点信息 3)启动操作系统的中断处理程序工作 中断装置通过“交换PSW”过程完成此项任务。 36、中断处理(软件即操作系统操作) 操作系统的中断处理程序对中断事件进行处理时,大致要做三方面的工作: 1)保护被中断进程的现场信息 2)分析中断原因

根据旧PSW的中断码可知发生该中断的具体原因。

3)处理发生的中断事件

请求系统创建相应的处理进程进入就绪队列。 37、阐述硬件的中断装置的作用 答:中断是计算机系统结构一个重要的组成部分。在中断机制中的硬件部分(中断装置)的作用就是在CPU每执行完一条指令后,判别是否有事件发生,如果没有事件发生,CPU继续执行;若有事件发生,中断装置中断原先占用CPU的程序的执行,把被中断程序的断点保存起来,让操作系统的处理服务程序占用CPU对事件进行处理,处理完后,再让被中断的程序继续占用CPU执行下去。

(所以中断装置的作用总的来说就是使操作系统可以控制各个程序的执行。) 38、操作系怎样让多个程序同时执行? 答:中央处理器在任何时刻最多只能被一个程序占用。通过中断装置系统中若干程序可以交替地占用处理器,形成多个程序同时执行的状态。利用CPU与外围设备的并行工作能力,以及各外围设备之间的并行工作能力,操作系统能让多个程序同时执行。 操作系统概述 1操作系统的分类 按照操作系统提供的服务,大致可以把操作系统分为有单道和多道之分的批处理系统,有同时性和独立性的分时系统,有严格时间规定的实时系统,可实现资源共享的网络系统,可协调多个计算机以完成一个共同任务的分布式系统。我们使有的windows是网络式系统。 2操作系统的结构 操作系统具有层次结构。。

层次结构最大特点是整体问题局部化来优化系统,提高系统的正确性、高效性使系统可维护、可移植。

主要优点是有利于系统设计和调试;主要困难在于层次的划分和安排。 3操作系统与用户 (1)作业执行步骤

操作系统提供给用户表示作业执行步骤的手段有两种:作业控制语言和操作控制命令。 作业控制语言形成批处理作业。操作控制命令进行交互处理。 (2)系统调用 操作系统提供的系统调用主要有:文件操作类,资源申请类,控制类,信息维护类系统调用往往在管态下执行。

当操作系统完成了用户请求的“系统调用”功能后,应使中央处理器从管态转换到目态工作。 4移动技术 移动技术是把某个作业移到另一处主存空间去(在磁盘整理中我们应用的也是类似的移动技术)。最大好处是可以合并一些空闲区。 处理器管理 - 一、多道程序设计系统 “多道程序设计系统”简称“多道系统”,即多个作业可同时装入主存储器进行运行的系统。在多道系统中一点必须的是系统须能进行程序浮动。所谓程序浮动是指程序可以随机地从主存的一个区域移动到另一个区域,程序被移动后仍不影响它的执行。多道系统的好处在于提高了处理器的利用率;充分利用外围设备资源;发挥了处理器与外围设备以及外围设备之间的并行工作能力。可以有效地提高系统中资源的利用率,增加单位时间内的算题量,从而提高了吞吐率。(关键词:处理器,外围设备,资源利用率,单位算题量,吞吐率),但要注意对每个计算问题来说所需要的时间可能延长,另外由于系统的资源有限,会产生饱和,因此并行工作道数与系统效率不成正比。 二、进程 1概念 进程是一个程序在一个数据集上的一次执行。由定义知进程关键组成是程序、数据集。

进程通过一个控制块来被系统所指挥,因此进程由程序、数据集和进程控制块三部分组成。进程控制块是进程存在的唯一标志。进程是要执行的,据这点可分将进程的状态分为等待态然后是就绪态最后是运行态。

进程的基本队列也就是就绪队列和等待队列,(因为进程运行了,也就用不上排队了,也就没有运行队列了。) 如果进程由一所在队列退出的操作称为出队,排入到一个指定的队列的操作称为入队。系统中负责进程入队和出队的工作称为队列管理。 2进程的调度 我们使用不同的调度是为了优化,具体说来是提高处理器利用率,增大吞吐量,减少等待时间,缩短响应时间。常用的算法有先来先服务、优先数调度法、时间片轮转调度法、分级调度(分级调度法可理解为多队列法)。顾名思义来先服务调度是先来者,先服务;优先数算法是对每个进程确定一个优先数,以决定先后。时间片轮转法是把规定进程一次使用处理器的最长时间称为\"时间片\"。让就绪进程按就绪的先后次序排成队列,依次运行。分级调度算法是由系统设置多个就绪队列,每个就绪队列中的进程按时间片轮转法占用处理器,这就是分级调度算法。 3进程的切换 进程切换指一个进程进处理器,另一个进程出处理器的过程。(废话!) 若有一个进程从运行态变成等待态,或完成工作后就撤消,则必定会发生进程切换。 4进程同步和通信 进程同步实际上是指并发进程之间的制约关系。即一个进程的执行依赖另一个进程的消息。没有消息时等待,有消息进被唤醒。

进程通信是进程之大量信息的方式。 5进程和死锁 三、可再入程序 一个能被多个用户同时调用的程序称做\"可再入\"的程序。可再入程序必须是纯代码,即在执行时自身不改变。编译程序和操作系统程序通常都是\"可再入\"程序。 存储管理 - 一、存储器: 中央处理器存储下列中信息的速度依次为:寄存器最快;通过系统总线存取主存储器的速度居中;辅助存储器最慢。

寄存器用来存放临时的工作信息和系统必须的控制信息。

主存储器是CPU能直接访问的惟一的存储空间.

主存储器中存放操作系统的核心部分,以及当前需执行的程序和数据。 主存储器以“字节(BYTE)”为单位进行编址

辅助存储器是存放操作下的非核心部分和其他程序和数据。容量大且能永久

保存信息

磁盘的信息可随机存取,磁带上的信息只能顺序存取。 二、 储器的地址: 三、 主存储器以字节为编址单位 四、 1、物理地址与逻辑地址。

五、 物理地址(绝对地址):.128MB的主存器有128×1024×1024=134217728字节,所以它的内存绝对地址就是从0到134217727。

六、 逻辑地址:用户程序中使用的从“0”地址开始的连续地址。 七、 三、重定位 八、 重定位即把逻辑地址转换成绝对地址。重定位的方式有“静态重定位”和“动态重定位”两种。(1)静态重定位

九、 在装入一个作业时,把作业中的指令地址和数据地址全部转换成绝对地址。这种转换工作是在作业开始前集中完成的,在作业执行过程中无需再进行地址转换。所以称为“静态重定位”。 十、 (2)动态重定位

十一、 在装入一个作业时,不进行地址转换,而是直接把作业装到分配的主区域中。在作业执行过程中,每当执行一条指令时都由硬件的地址转换机构转换成绝对地址。这种方式的地址转换是在作业执行时动态完成的,所以称为动态重定位。

十二、 动态重定位由软件(操作系统)和硬件(地址转换机构)相互配合来实现。动态重定位的系统支持“程序浮动”,而静态重定位则不能。 十三、 页式管理 十四、 (1)采用页式管理,使主存空间充分利用,页不必为了得到连续空间而进行移动。可以提高系统效率。 十五、 (2)页式存储管理中为什么要设置页表和快表?

十六、 在页式存储管理中,主存被分成大小相等的若干块,同时程序逻辑地址也分成与块大小一致的若干页,这样就可以按页面为单位把作业的信息放入主存,并且可以不连续存放,为了表示逻辑地址中的页号与主存中块号的对应关系,就需要为每个作业建立一张页表,。

十七、 页表一般存放在主存中,当要按给定的逻辑地址访问主存时,要先访问页表,计算出绝对地址,这样两次访主存延长了指令执行周期,降低了执行速度,而设置一个高速缓冲寄存器将页表中的一部分存放进去,这部分页表就是快表,访问主存时二者同时进行,由于快表存放的是经常使用的页表内容,访问速度很快,这样可以大大加快查找速度和指令执行速度。 十八、 虚拟存储 十九、 一、虚拟存储器 二十、 虚拟存储器是为“扩大”主存容量而采用的一种设计技巧,就是它只装入部分作业信息来执行,好处在于借助于大容量的辅助存储器实现小主存空间容纳大逻辑地址空间的作业。 二十一、 虚拟存储器的容量由计算机的地址结构(地址总线位数)决定。如32位的,则最大的虚存容量为2^32=4294967296B=4GB 二十二、 二、叙述页式虚拟存储器的基本原理。 二十三、 页式虚拟存储器是在页式存储的基础上实现虚拟存储器的,其工作原理是: 二十四、 首先把作业信息作为副本存放在磁盘上,作业执行时,把作业信息的部分页面装入主存,并在页表中对相应的页面是否装入主存作出标志。 二十五、 作业执行时若所访问的页面已经在主存中,则按页式存储管理方式进行地址转换,得到绝对地址,否则产生“缺页中断”由操作系统把当前所需的页面装入主存。

二十六、 若在装入页面时主存中无空闲块,则由操作系统根据某种“页面调度”算法选择适当的页面调出主存换入所需的页面。 二十七、 三、常用的页面调度算法:FIFO、LRU、LFU

二十八、 页面调度:当主页中无空闲块时,为了装入一个页面,就必须按某种算法将主存中某个页调出,调入所需装入的页面。 二十九、 常用的算法有:先进先出调度算法(FIFO)、最近最少使用调度算法(LRU)和最近最不常用调度算法(LFU)。

三十、 特别要注意掌握的就是LRU(最近最少使用调度算法)的算法,如何进行调度。

三十一、 5、缺页中断率 三十二、 f=F/A,这里的f就称为缺页中断率。

三十三、 A为作业执行中访问页面的总次数同,F为访问的页面尚未装入主存的次数 三十四、 四、段式虚拟存储器的实现 三十五、 段式虚拟存储管理以段式存储管理为基础,即在磁盘上保留作业的各个分段信息,作业执行时把需要执行的一段或几段装入主存。 三十六、 在实际使用中,也要进行查表和地址转换以及“缺段中断”和调度(包括调出、装入、移动等)工作。 三十七、 五、比较各种存储管理方式的特征。 三十八、 单分区管理 三十九、 除操作系统占用的一部分存储空间外,其余的用户区域作为一个连续的分区分配给用户使用

四十、 界限寄存器值+逻辑地址→绝对地址

固定分区的管理分区数目、大小固定 设置上、下限寄存器逻辑地址+下限地址→绝对地址。

可变分区的管理可变分区管理方式不是把作业装入到已经划分好的分区中,而是在作业要求装入主存储器时,根据作业需要的主存量和当时的主存情况决定是否可以装入该作业。 分区数目大小不定设置基址、限长寄存器

逻辑地址+基址寄存器的值→绝对地址。基址值≤绝对地址≤基址值+限长值

页式存储管理主存储器分为大小相等的\"块\"

程序中的逻辑地址进行分\"页”,页的大小与块的大小一致。 用页表登记块页分配情况

逻辑地址的页号部分→页表中对应页号的起始地址→与逻辑地址的页内地址部分拼成绝对地址。由页表中的标志位验证存取是否合法,根据页表长度判断是否越界.

段存储管理程序分段

每一段分配一个连续的主存区域,作业的各段可被装到不相连的几个区域中。 设置段表记录分配情况

逻辑地址中的段号→查段表得到本段起始地址+段内地址→绝对地址由段表中的标志位验证存取是否合法,根据段表长度判断是否越界

页式虚拟存储管理类似页式管理将作业信息保存在磁盘上部分装入主存 类似页式管理: 逻辑地址的页号部分→页表中对应页号的起始地址→与逻辑地址的页内地址部分拼成绝对地址。 若该页对应标志为0,则硬件形成\"缺页中断\"先将该页调入主存类似页式管理 段式虚拟存储管理类似段式管理将作业信息保存在磁盘上部分装入主存 类似段式管理类似段式管理 只有单分区适用于单道系统。

只有单分区和固定分区的为静态重定位,不需要硬件转换机构。其余为动态重定位,需要硬件转换。 六、可变分区经常采用的主存分配算法 最先适应分配算法:简单地说,就是在分区表中顺序查找,找到够大的空闲区就分配。 最优适应分配算法:挑选一个能满足作业要求的最小空闲区。 最坏适应分配算法:挑一个最大的空闲区分给作业使用. 七、I/O保护 <1>特权指令:即可能影响系统安全的指令。全文是为保护输入输出的完整性,把“启动I/O”等的一类可能影响系统安全的指令定义为特权指令。 特权指令的使用权限:特权指令只允许操作系统使用,用户程序不能使用特权指令。

用户程序若要启动I/O,必须请求操作系统代为启动。优点在于:这种方式不但保证安全地使用外围设备,正确地传送信息,而且可减少用户为启动设备而必须了解外围设备特性以及启动等工作,大大方便了用户。) <2>管态和目态 中央处理器的两种工作方式:管态和目态。

在管态下,中央处理器可执行包含特权指令在内的一切指令;

目态次于管态,在目态下,中央处理器不准执行特权指令。

操作系统在管态下工作,用户程序在目态下工作。 <3>存储保护 操作系统与硬件如何配合来实现存储保护的? 答:硬件中设置了两个寄存器来限定用户程序执行时可以访问的空间范围。这两个寄存器是基址寄存器和限长寄存器,用来限定用户程序执行时可以访问的主存空间范围。

程序执行时,系统对每一个访问内存的地址进行核对: \"基址寄存器值≤访问地址≤基址寄存器值+限长寄存器值\"成立,则允许访问;否则,不允许访问。

这样就保护了该区域以外的存储信息不受到破坏,一旦程序执行中出错也不会涉及其他程序。

注:中央处理器在管态下执行程序时候,对访问主存的地址不进行核对。 文件管理 一、存储介质是指可用来记录信息的磁带、硬磁盘组、软磁盘片、卡片等。存储介质的物理单位定义为“卷”。 存储设备与主存储器之间进行信息交换的物理单位是块。块定义为存储介质上存放的连续信息所组成的一块区域。 逻辑上具有完整意义的信息集合称为“文件”。

用户对文件内的信息按逻辑上独立的含义划分的信息单位是记录,每个单位为一个逻辑记录。 二、文件 1、文件的目录 (1)文件目录是用来检索文件的。文件目录由若干目录项组成。目录项记录文件的有关信息。 (2)文件目录的结构 包括一级目录结构、二级目录结构和树形(多级)目录结构。

树形目录允许用户在自己的文件中再建立子目录。从根目录到文件之间所有各级子目录名和该文件名的顺序组合称为文件的“路径名”,路径分为绝对路径,相对路径。 2、文件的分类 文件可以按各种方法进行分类: 按用途系统文件、库文件、用户文件 按保护级别可执行文件、只读文件、读写文件

按信息流向输入文件、输出文件、输入输出文件

按存放时限临时文件、永久文件、档案文件

按设备类型磁盘文件、磁带文件、卡片文件、打印文件

按文件组织结构逻辑文件、物理文件(顺序文件、链接文件、索引文件) 3、文件的存取方式 顺序存取,随机存取

文件的存取方式有顺序存取和随机存取两种。磁带上的文件只能顺序存取,磁盘上的文件既可采用顺序方式也可用随机方式存取。 4、文件的结构 1逻辑结构 用户构造的文件称为文件的逻辑结构。如用户的一篇文档、一个数据库记录文件等。逻辑文件有两种形式:流式文件和记录式文件。

流式文件是指用户对文件内信息不再划分的可独立的单位,如我们的word文件,图片文件等。整个文件是以顺序的一串信息组成。

记录式文件:是指用户对文件内信息按逻辑上独立的含义再划分信息单位,每个单位为一个逻辑记录。记录式文件可以存取的最小单位是记录项。每个记录可以独立存取。这个在数据库中我们学得比较多,容易理解。 2、物理结构 由文件系统在存储介质上的文件构造方式称为文件的物理结构。物理结构有 1)顺序结构:在磁盘上就是一块接着一块地放文件。逻辑记录的顺序和磁盘顺序文件块的顺序一致。顺序文件的最大优点是存取速度快(可以连续访问)。 2)链接结构:把磁盘分块,把文件任意存入其中,再用指针把各个块按顺序链接起来。这样所有空闲块都可以被利用,在顺序读取时效率较高但需要随机存取时效率低下(因为要从第一个记录开始读取查找)。

3)索引结构:磁盘不分块,文件的逻辑记录任意存放在磁盘中,通过一张“索引表”指示每个逻辑记录存放位置。这样,访问时根据索引表中的项来查找磁盘中的记录,既适合顺序存取记录,也可以随机存取记录,并且容易实现记录的增删和插入,所以索引结构被广泛应用。 5、文件的保护与保密 1)文件的保护是防止文件被破坏,。文件的保密是防止文件被窃取。 2)文件的保护措施:

防止系统故障造成的破坏,可以采建立副本和定时转储的方法;为了防止用户共享文件可能造成的文件破坏,可以采用树形目录结构、存取控制表和规定文件使用权限的方法。

3)文件的常用保密措施:隐藏文件目录、设置口令和使用密码(加密)等。 三、记录的成组与分解 1记录的成组与分解的原因:由于磁盘块的大小是预先划分好的,大小固定,而逻辑记录的大小是用户文件性质决定的,不一定和块大小一致。

2记录的成组:把若干个逻辑记录存入一个块的工作称为“记录的成组”。每块中逻辑记录的个数称“块因子”. 3、记录的分解:这是记录成组的一个逆过程。经程是先从磁盘中找到记录所在的块,并将本块读入主存缓冲区,再从缓冲区取出所需要的记录送到用户工作区。如果用户所需的记录已经在缓冲区中,则不需要启动外设读块信息,这也可以提高系统工作效率。 四、存储空间的分配与回收 1用位示图进行磁盘存储空间的分配与回收。 2用空闲块表进行磁盘存储空间的分配与回收:如同主存管理中的空闲区表,表每一行记录一组连续空闲块的首块号和空闲块数,空闲块数为“0”的登记项为“空”登记项。 作业管理 - 一、作业和作业步 1、作业:我们把用户要求计算机系统处理的一个问题称为一个“作业” 2、作业步:完成作业的每一个步聚称为“作业步”。 二、作业控制方式 1、作业控制方式,包括批处理方式和交互方式。 批处理控制方式:也称脱机控制方式或自动控制方式。就是一下子交待任务,执行过程中不再干涉。

交互控制方式:也称联机控制方式。就是一步一步地交待任务。做好了一步,再做下一步。

2、批处理作业的控制(领会)

1)按用户提交的作业控制说明书控制作业的执行。

2)一个作业步的工作往往由多个进程的合作来完成。

3)一个作业步的工作完成后,继续下一个作业步的作业,直至作业执行结

束。 3、交互式作业的管理(领会) 1)、交互式作业的特点:交互式作业的特点主要表现在交互性上,它采用人机对话的方式工作。 2)、交互式作业的控制:一种是操作使用接口,另一种是命令解释执行。 操作使用接口包括操作控制命令,菜单技术,窗口技术

命令的解释执行一类是操作系统中的相应处理模块直接解释执行;另一类必须创建用户进程去解释执行。 3、终端用户控制终端作业的执行大致有四个阶段:终端的连接、用户注册、控制作业执行和用户退出。 三、批处理作业的调度及调度算法(综合应用) 1、批处理作业:采用批处理控制方式的作业称为“批处理作业” 2、批处理作业进入系统时必须提交:源程序、运行时的数据、用作业控制语言书写的作业控制说明书。

3、批处理作业的输入:操作员只要用“预输入命令”启动SPOOL系统中的“预输入程序”工作就可把作业流中的作业信息存放到“输入井”中。等待系统的调度。 4什么叫作业调度?作业调度选择作业的必要条件是什么? 答:作业调度是指按一定的策略从“输入井”中选择资源能得到满足的作业装入主存储器,使作业能有机会占用处理器执行。作业调度选择作业的必要条件是系统中现有的尚未分配的资源能够满足该作业的资源要求。 6、作业调度与进程调度 作业调度的职责是把输入井中的作业装入主存.

进程调度的职责就是选择当前可占用处理器的进程. 设备管理 - 一、输入输出操作(要求达到“识记”层次) 1、什么是输入输出操作:主存储器与外围设备之间的信息传送操作称为输入输出操作。

2、对于存储型设备,输入输出操作的信息传输单位为“块”。对输入输出型设备,输入输出操作的信息传输单位为“字符”。 二、独占设备和共享设备(识记) 1、独占设备是指每次只能供一个作业执行期间单独使用的设备。如输入机、磁带机、打印机等。

2、共享设备是指允许几个作业执行期间可同时使用的设备。共享设备的“同时使用”的含义是指多个作业可以交替启动共享设备,其实是当一个用业正在使用设备时其他作业暂不能使用,即每一时刻仍只有一个作业占用,但当一个作业正在使用设备时其他作业就可使用。 三、独占设备的分配(领会) 1、独占设备的绝对号与相对号 这和绝对地址/相对地址的概念类似。绝对号就是将每一台设备确定一个编号(相当于一个绝对地址)。相对号就是为了用户程序的方便而设的,在用户请求使用时,采用“设备类-相对号”来提出使用设备要求。由系统建立绝对号与“设备类-相对号”之间的关系,就能正确启用设备了。 2、设备的指定方式 1)设备绝对号:系统为每一个设备确定一个唯一的编号。

2)设备相对号:不具体指定是哪台设备,只说明要某类设备多少台,这样可以由系统灵活分配。

3)设备独立性:采用“设备类、相对号”方式使用设备时,用户编程时使用的设备与实际使用哪台设备无关,这就是“设备独立性” 4)如何实现独占性设备分配:对于独占性设备,系统采用“静态分配”的策略,就是当一个作业所需使用的独占设备能得到满足时,该作业才能被装入主存储器执行。

在操作系统中,设置“设备分配表”来

记录计算机系统所配置的独占设备类型、台数和分配情况等。设备分配表由“设备类表”和“设备表”两部分组成。通过查表和修改表的操作完成设备分配工作。 四、磁盘的驱动调度(领会) 1、磁盘的结构 还记得小学时的作业吗?秒,分,小时?!:)这也一样,扇区套在磁道里,磁道套在柱面里,柱面套在一个磁盘里。接下来的问题就是被除数=除数×商+余数了。明白了吗? 2、访问磁盘的操作时间

3、磁盘的驱动调度:系统决定等待磁盘访问者的执行次序的工作就是磁盘的“驱动调度” 4、对磁盘进行驱动调度的目的:有利于系统效率的提高。 5、

磁盘调度分为移臂调度和旋转调度。移臂调度算法包括以下四种: 1)先来先服务算法; 根据访问者提出访问请求的先后次序来决定执行次序。

2)最短寻找时间优先调度算法; 从等待的访问者中挑选寻找时间最短的那个请求执行,而不管访问者的先后次序。 3)电梯调度算法; 从移动臂当前位置沿移动方向选择最近的那个柱面的访问者来执行,若该方向上无请求访问时,就改变移动方向再选择。 4)单向扫描调度算法。 从0柱面开始往里单向扫描,扫到哪个执行哪个。

以上几种算法要能够区分,详见本栏的《解题精华,想得高分者进》一文。也是我写的。 7、信息的优化分布:知道信息在磁盘上排列不一定是按顺序最优,对于一些能预知处理要求的信息采用优化分页可以缩短输入输出操作时间,提高系统效率。 五、外围设备的启动(识记) 1、通道(channel):计算机系统中能够独立完成输入输出操作的硬件装置。是CPU与设备的桥梁。

注解:CPU并不直接操作外围设备,他连接通道(I/O处理机),通道连接设备控制器,设备控制器连接设备。CPU只需把“I/O\"设备启动,并给出相关的操作要求。然后就由通道来处理输入输出事宜,做完后报告CPU。 2、通道地址字(CAW)和通道状态字(CSW) 用来存放通道程序首地址的主存固定单元称为“通道地址字”。

通道状态字:用于记录通道和设备执行情况的主存单元。

3、I/O中断:是指中央处理器和通道协调工作的一种手段。通道借助I/O中断请求CPU进行干预,CPU根据产生的I/O中断事件了解输入输出操作的执行情况,I/O中断事件是由于通道程序的执行或其他外界原因引起的,对通道操作而言,当操作正常结束或异常结束(如设备故障、设备特殊情况引起异常结束)形成I/O中断,由CPU根据相应情况分别处理。

六、虚拟设备SPOOL系统(领会) 1、实现虚拟设备的目的:用一种物理设备模拟另一类物理设备,使各作业在执行期间只使用虚拟的设备而不直接使用物理的独占设备。这种技术可使独占的设备变成可共享的设备,使得设备的利用率和系统效率都能得到提高。 2、实现虚拟设备的硬件条件:大容量磁盘;中断装置和通道;中央处理器与通道并行工作的能力。实现虚拟设备的软件条件是要求操作系统采用多道程序设计技术。 3、虚拟设备的实现原理:对于多道程序,输入时将一批作业的信息通过输入设备预先传送到磁盘上。输出时将作业产生的结果也全部暂时存在磁盘上而不直接输出,直到一个作业得到全部结果而执行结束时再行输出。这样在执行过程中,不需要使用输入机和打印机。

因此在配置一台输入机和打印机的情况下,可以让多个作业同时执行,并且各个作业请求输入信息和输出结果的要求都能及时得到满足和实现。 4、SPOOL系统的组成和实现: 井:为实现虚拟设备在磁盘上划出的专用存储空间,用于存放作业的初始信息和执行结果。 SPOOL系统由三部分程序组成: 1预输入程序。通过该程序把作业流中每个作业的初始信息传送到输入井保存,以备作业执行时使用。

2井管理程序:根据作业的请求,保证作业正确及时地从“井”中读取或写出信息。

3缓输出程序。它负责查看“输出井”中是否有待输出的结果信息,若有则启动打印机把作业结果输出。

5、spool系统可以缩短作业执行时间的原因。

作业的执行时间是指作业被装入主存储器到产生全部结果所需要的时间。在SP在SPOOL系统控制下,作业执行时从磁盘上读/写信息代替低速的输入机和打印机的读/写操作,信息传送的速率显然是快得多。因此作业的执行时间就缩短了. 死锁 死锁:(就是路口的塞车现象) 若系统中存在一组进程(两个或多个进程),它们中的每一个进程都占用了某种资源而又都在等待其中另一个进程所占用的资源,这种等待永远不能结束,则说系统出现了“死锁”。或说这组进程处于“死锁”状态。 一、死锁的防止(简单应用) 1、系统出现死锁必然出现以下情况: 1)互斥使用资源 2)占有并等待资源 3)不可抢夺资源 4)循环等待资源 2、死锁的防止策略:破坏产生死锁的条件中的一个就可以了。 常用的方法有:静态分配、、按序分配、抢夺式分配3种。

二、死锁的避免(简单应用) 1、死锁的避免是让系统处于安全状态,来避免发生死锁。

安全状态:如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于“安全状态”。 2、银行算法是怎样避免死锁的: 计算机银行家算法是通过动态地检测系统中资源分配情况和进程对资源的需求情况,在保证到少有一个进程能得到所需要的全部资源,从而能确保系统处于安全状态进,才把资源分配给申请者,从而避免了进程共享资源时系统发生死锁。

采用银行家算法时为进程分配资源的方式

1)对每一个首次申请资源的进程都要测试该进程对资源的最大的需求量。如果系统现存资源可以满足他的最大需求量,就按当前申请量为分配资源。否则推迟分配。

2)进程执行中继续申请资源时,先测试该进程已占用资源数和本次申请资源总数有没有超过最大需求量。超过就不分配。 若没有超过,再测试系统现存资源是否满足进程尚需的最大资源量,满足则按当前申请量分配,否则也推迟分配。 总之,银行家算法要保证分配资源时系统现存资源一定能满足至少一个进程所需的全部资源。

(银行家算法在操作系统的实践考试中可能会用到) 三、死锁的检测和解除(领会) 死锁的检测 就是既不打预防针,也不去避免得病,而是经常去体检,如果发现有病了就治疗。这是一种事后解决的办法,也算是解决死锁问题的一条途径。但这毕竟要付出较大代价. 进程同步与通信 - 重点是:分析与时间有关的错误;用PV操作实现进程的同步与互斥;用信箱实现进程通信。 一、进程的顺序性与并发性(领会) 1进程的顺序性:任何进程在顺序的处理器上的执行是严格按照顺序进行的,每次只能执行一个操作。这就是进程的顺序性。 当一个进程独占处理器顺序执行时,具有两个特性:一、封闭性二、可再现性。封闭性是说进程的执行结果只取决于进程本身,不受外界影响。可再现性是说当进程重复执行时,必定获得相同的结果。 2、进程的可同时执行:指一个进程没有完,另一个就可以开始。在时间上是可重叠的,我们把这个叫做进程的可同时执行。 3、进程的并发性:系统中存在一组可同时执行的进程。并发进程相互之间可能是无关的,也可能是交往的。

并发进程的执行速度取决于自身和进程调度策略。二者缺一不可,执行速度不能由自己决定。 4与时间有关的错误:有交往的并发进程交替使用共享资源时会出现错误,错误与时间有关,称为与时间有关的错误。其错误的根本原因是这些进程交叉使用了共享变量。 二、相关临界区 1、并发进程中与共享变量有关的程序段称为“临界区”。并发进程中涉及到相同变量的那些程序段是相关临界区 2、对相关临界区的管理的基本要求。 对相关临界区管理的基本原则是:如果有进程在相关临界区执行,则不让另一个进程进入相关的临界区执行。 五、进程的同步(综合应用) 1、进程同步的含义:进程的同步是指并发进程之间存在一种制约关系,一个进程的执行依赖另一个进程的消息,当一个进程没有得到另一个进程的消息时应等待,直到消息到达才被唤醒。 “生产者”与“消费者”是同步问题的典型例子。 这里有两个消息量:一是“缓冲器里有物品”,二是“可把物品存入缓冲器”,这两个消息量对应需要两个信号量SPut和SGet。SP的初始值为1,如果初始时可用的缓冲器为n个,则SP=n;SG的初始值为0。

生产者进程调用P(SP)和V(SG),消费者进程调用P(SG)和V(SP),根据SG和SP的值来决定是否可以存或取物。 2、正确使用PV操作实现进程同步。 (1)用一个信号量与一个消息联系起来,当信号量的值为0时表示期望的消息尚未产生,当信号量值为非0时表示期望的消息已经存在。

(2)在用PV操作实现同步时,一个信号量与一个消息量联系在一起,当有多个消息时必须定义多个信号量;测试不同的消息是否到达或发送不同消息时,应对不同的信号调用P操作或V操作。(3)仔细领会教材中的例子,关于PV操作,在考试中出现的可能性极大,但是难度基本不超过教材上例题.见本栏的高手切磋。 3、使用PV操作实现进程同步与互斥的混合问题。 进程的同步与进程的互斥都涉及到并发进程访问共享资源的问题。可以看到进程的互斥实际上是进程同步的一种特殊情况。若干进程互斥使用资源时,一个等待使用资源的的进程在得到占用资源的进程发出“归还资源”的消息(调用了V操作)后,它就可去使用资源。因此,互斥使用资源的进程之间实际上也存在一个进程依赖另一个进程发出信息的制约关系。所以,也把进程的互斥与进程的同步称为进程的同步。 六、进程通信(领会) 1、进程通信的含义:通过专门的通信机制实现进程间交换大量信息的通信方式称为“进程通信”2、实现进程通信的基本原语:有两条:“send(发送)”和“receive(接收)”原语。 3、利用信箱通信时“发送”和“接收”原语的功能。 send(N,M)功能:把信件M送到指定的信箱N中。 receive(N,X)功能:从指定信箱N中取出一封信,存放到指定的地址X中。 4、信箱的基本结构:一个信箱由“信箱说明”和“信箱体”两部分组成。 七、线程的概念(识记) 线程是进程中可独立执行的子任务,一个进程中可以有一个或多个线程,每个线程都有一个唯一的标识符。

支持线程管理的操作系统有Mach,OS/2,WindowsNT,UNIX等。 进程同步与通信 - 重点是:分析与时间有关的错误;用PV操作实现进程的同步与互斥;用信箱实现进程通信。 一、进程的顺序性与并发性(领会) 1进程的顺序性:任何进程在顺序的处理器上的执行是严格按照顺序进行的,每次只能执行一个操作。这就是进程的顺序性。 当一个进程独占处理器顺序执行时,具有两个特性:一、封闭性二、可再现性。封闭性是说进程的执行结果只取决于进程本身,不受外界影响。可再现性是说当进程重复执行时,必定获得相同的结果。 2、进程的可同时执行:指一个进程没有完,另一个就可以开始。在时间上是可重叠的,我们把这个叫做进程的可同时执行。 3、进程的并发性:系统中存在一组可同时执行的进程。并发进程相互之间可能是无关的,也可能是交往的。

并发进程的执行速度取决于自身和进程调度策略。二者缺一不可,执行速度不能由自己决定。 4与时间有关的错误:有交往的并发进程交替使用共享资源时会出现错误,错误与时间有关,称为与时间有关的错误。其错误的根本原因是这些进程交叉使用了共享变量。 二、相关临界区 1、并发进程中与共享变量有关的程序段称为“临界区”。并发进程中涉及到相同变量的那些程序段是相关临界区 2、对相关临界区的管理的基本要求。 对相关临界区管理的基本原则是:如果有进程在相关临界区执行,则不让另一个进程进入相关的临界区执行。 五、进程的同步(综合应用) 1、进程同步的含义:进程的同步是指并发进程之间存在一种制约关系,一个进程的执行依赖另一个进程的消息,当一个进程没有得到另一个进程的消息时应等待,直到消息到达才被唤醒。 “生产者”与“消费者”是同步问题的典型例子。 这里有两个消息量:一是“缓冲器里有物品”,二是“可把物品存入缓冲器”,这两个消息量对应需要两个信号量SPut和SGet。SP的初始值为1,如果初始时可用的缓冲器为n个,则SP=n;SG的初始值为0。

生产者进程调用P(SP)和V(SG),

消费者进程调用P(SG)和V(SP),根据SG和SP的值来决定是否可以存或取物。 2、正确使用PV操作实现进程同步。 (1)用一个信号量与一个消息联系起来,当信号量的值为0时表示期望的消息尚未产生,当信号量值为非0时表示期望的消息已经存在。

(2)在用PV操作实现同步时,一个信号量与一个消息量联系在一起,当有多个消息时必须定义多个信号量;测试不同的消息是否到达或发送不同消息时,应对不同的信号调用P操作或V操作。(3)仔细领会教材中的例子,关于PV操作,在考试中出现的可能性极大,但是难度基本不超过教材上例题.见本栏的高手切磋。 3、使用PV操作实现进程同步与互斥的混合问题。 进程的同步与进程的互斥都涉及到并发进程访问共享资源的问题。可以看到进程的互斥实际上是进程同步的一种特殊情况。若干进程互斥使用资源时,一个等待使用资源的的进程在得到占用资源的进程发出“归还资源”的消息

(调用了V操作)后,它就可去使用资源。因此,互斥使用资源的进程之间实际上也存在一个进程依赖另一个进程发出信息的制约关系。所以,也把进程的互斥与进程的同步称为进程的同步。 六、进程通信(领会) 1、进程通信的含义:通过专门的通信机制实现进程间交换大量信息的通信方式称为“进程通信”2、实现进程通信的基本原语:有两条:“send(发送)”和“receive(接收)”原语。 3、利用信箱通信时“发送”和“接收”原语的功能。 send(N,M)功能:把信件M送到指定的信箱N中。 receive(N,X)功能:从指定信箱N中取出一封信,存放到指定的地址X中。 4、信箱的基本结构:一个信箱由“信箱说明”和“信箱体”两部分组成。 七、线程的概念(识记)

线程是进程中可独立执行的子任务,一个进程中可以有一个或多个线程,每个线程都有一个唯一的标识符。

支持线程管理的操作系统有Mach,OS/2,WindowsNT,UNIX等。 中断及中断机制 - 中断及中断机制 一、中断 1、中断。 2、中断的类型。 从中断事件的性质出发,中断可以分为两大类: ·强迫性中断事件包括硬件故障中断,程序性中断,外部中断和输入输出中断等 ·自愿性中断事件是由正在运行的进程执行一条访管指令用以请求系统调用而引起的中断,这种中断也称为\"访管中断\"。

一般情况下,优先级的高低顺序依次为:硬件故障中断、自愿中断、程序性中断,外部中断和输入输出中断。 自愿中断的断点是确定的,而强迫性中断的断点可能发生在任何位置。 3、中断的响应。 中断响应(硬件即中断装置操作) 处理器每执行一条指令后,硬件的中断位置立即检查有无中断事件发生,若有中断事件发生,则暂停现行进程的执行,而让操作系统的中断处理程序占用处理器,这一过程称为\"中断响应\"。 中断响应过程中,中断装置要做以下三项工作: 1)是否有中断事件发生 2)若有中断发生,保护断点信息 3)启动操作系统的中断处理程序工作 中断装置通过\"交换PSW\"过程完成此项任务,

4中断处理(软件即操作系统操作) 操作系统的中断处理程序对中断事件进行处理时,大致要做三方面的工作: 1)保护被中断进程的现场信息 2)分析中断原因

根据旧PSW的中断码可知发生该中断的具体原因。

3)处理发生的中断事件

请求系统创建相应的处理进程进入就绪队列。 5中断屏蔽 中断屏蔽技术是在一个中断处理没有结束之前不响应其他中断事件,或者只响应比当前级别高的中断事件。 如当中断装置检查到有中断事件后,便去查看PSW中中断屏蔽标志,如果没有屏蔽就响应该中断;否则,暂时不响应该中断,待屏蔽标志消除后再响应。自愿中断是不能屏蔽的。 中断机制

在它执行程序的时候,如果有另外的事件发生(比如用户又打开了一个程序)那么这时候就需要由计算机系统的中断机制来处理了。

中断机制包括硬件的中断装置和操作系统的中断处理服务程序。 阐述硬件的中断装置的作用。 答:中断是计算机系统结构一个重要的组成部分。在中断机制中的硬件部分(中断装置)的作用就是在CPU每执行

完一条指令后,判别是否有事件发生,如果没有事件发生,CPU继续执行;若有事件发生,中断装置中断原先占用CPU的程序的执行,把被中断程序的断点保存起来,让操作系统的处理服务程序占用CPU对事件进行处理,处理完后,再让被中断的程序继续占用CPU执行下去。(所以中断装置的作用总的来说就是使操作系统可以控制各个程序的执行。) (3)操作系怎样让多个程序同时执行? 答:中央处理器在任何时刻最多只能被一个程序占用。通过中断装置

系统中若干程序可以交替地占用处理器,形成多个程序同时执行的状态。利用CPU与外围设备的并行工作能力,以及各外围设备之间的并行工作能力,操作系统能让多个程序同时执行。 UNIX 一、UNIX系统结构 1、UNIX的层次结构。 UNIX可以分为内核层和外壳层两部分。//内核层是UNIX是核心。/外壳层由shell解释程序(即为用户提供的各种命令。)、支持程序设计的各种语言(如C、PASCAL和BASIC等)、编译程序和解释程序、实用程序和系统库等组成。 2、UNIX系统的主要特点。 短小精悍//简洁有效//易移植//可扩充//开放性 3、UNIX的程序员接口和用户接口。 UNIX的程序员接口就是其内核提供的系统调用。

系统调用是用户程序请求操作系统为其服务的唯一形式。

一个在终端上登录成功的用户可以用shell命令来得到用户程序,用户程序用“trap”指令请求服务。 二、UNIX系统的进程 在UNIX系统中进程由三部分组成:进程控制块、正文段和数据段。 三、UNIX系统的存储管理 1、对换(Swapping)技术:这就是前面我们所学的虚拟存储器在UNIX中的应用。磁盘上设置开辟一个足够大的区域,为对换区。当内存中的进程要扩大内存空间,而当前的内存空间又不能满足时,则可把内存中的某些进程暂换出到对换区中,在适当的时候又可以把它们换进内存。因而,对换区可作为内存的逻辑扩充,用对换技术解决进程之间的内存竞争。

UNIX对内存空间和对换区空间的管理都采用最先适应分配算法。 2、虚拟页式存储管理技术。UNIX把进程的地址空间划分成三个功能区段:系统区段、进程控制区段、进程程序区段。系统区段占用系统空间,系统空间中的程序和数据常驻内存。其余两个区段占用进程空间,是进程中非常驻内存部分。

通过页表和硬件的地址转换机构完成虚拟地址和物理地址之间的转换。 四、UNIX系统的文件系统(领会) 1、UNIX系统中的逻辑文件采用流式文件组织

在UNIX系统中,文件的逻辑结构是由一串顺序的字符组成的流式文件。文件的物理结构是采用索引结构方式,每个文件都有一张索引表记录文件占用的磁盘空间块号。。UNIX的文件系统分成基本文件和可装卸的子文件系统两部分。 2、UNIX的树形目录结构:UNIX采用树形目录。 UNIX把普通文件、目录文件保存在磁盘上,一个具体的文件可以用路径名确定。

磁盘被分成块(扇区),每块为512个字节或1K字节。。 4、UNIX的索引节点。UNIX中每个文件有一个唯一的索引节点,索引节点静态地存放在磁盘上,故称为磁盘索引节点。为了加快文件访问速度而在内存中对磁盘索引节点进行复制形成活动索引节点。 UNIX中可分配的磁盘空间有两类:一类是索引节点区,另一类是存放文件的存储区。 五、UNIX系统的I/O系统(领会,了解大意即可。) 1、块设备和字符设备块设备以块为单位每次与内存交换一组信息。块设备是用来存储信息的设备。字符设备以字节为单位与内存交换信息。字符设备是计算机用来接收外部信息或把处理好的信息传向外部的设备。块设备包括硬盘、软盘、磁带等,字符设备包括终端、打印机等。 2、设备文件:UNIX系统把设备也当作文件来对待,每个设备都有一个文件名,并对它像文件那样进行操作。 3、块设备的管理:通过启动驱动程序完成相应的打开、关闭、读和写等操作。 4、字符设备的管理: 字符设备工作速度低,一次输入输出要求传送的字节数少而且不固定。因此不适宜采用块设备管理中的缓冲技术,而是采用缓冲区容量较小的、易管理的字符缓冲技术。 5、缓冲技术:这个技术就是前面我们学过的虚拟设备(SPOOL技术)在UNIX中的实际应用UNIX采用缓冲技术实现设备的读写操作。 二.理解与简单应用 三.预测:会考到10-20分

四.我们使有的windows是网络式系统。

五.管态和目态 六.中央处理器的两种工作方式:管态和目态。 七.在管态下,中央处理器可执行包含特权指令在内的一切指令;

八.目态次于管态,在目态下,中央处理器不准执行特权指令。

九.操作系统在管态下工作,用户程序在目态下工作。

十.当操作系统完成了用户请求的“系统调用”功能后,应使中央处理器从管态转换到目态工作。

十一.注:中央处理器在管态下执行程序时候,对访问主存的地址不进行核对。

十二.进程的切换

十三.进程切换指一个进程进处理器,另一个进程出处理器的过程。(废话!) 十四.若有一个进程从运行态变成等待态,或完成工作后就撤消,则必定会发生进程切换。

十五.进程通信是进程之大量信息的方式。 十六.中央处理器存储下列中信息的速度依次为:寄存器最快;通过系统总线存取主存储器的速度居中;辅助存储器最慢。

十七.寄存器用来存放临时的工作信息和系统必须的控制信息。

十八.主存储器是CPU能直接访问的惟一的存储空间.

十九.主存储器中存放操作系统的核心部分,以及当前需执行的程序和数据。 二十.主存储器以“字节(BYTE)”为单位进行编址

二十一.辅助存储器是存放操作下的非核心部分和其他程序和数据。容量大且能永久保存信息

二十二.磁盘的信息可随机存取,磁带上的信息只能顺序存取。 二十三.物理地址(绝对地址):.128MB的主存器有128×1024×1024=134217728字节,所以它的内存绝对地址就是从0到134217727。 二十四.虚拟存储器的容量由计算机的地址结构(地址总线位数)决定。如32位的,则最大的虚存容量为2^32=4294967296B=4GB 二十五.理解:它是说地址占N位,比如说地址占两位,那么第一个单元地址是00,第二个01,第三个是10,第四个是11,单元总共为2^2,若地址占4位,第一个单元为0000,第二个0001……,最后一个单元是1111,总单元数=2^4=16,地址若占了N位,那么相应的单元总数为2^N. 二十六.我们现在假设计算机只有3根地址线,那么对于3根地址线就有:000,001,010,011,100,101,110,111这么8种状态,当CPU需要在内存中调取数据的时候,就会在地址线上加载地址选择信号,那么也就是只有000,001,010,011,100,101,110,111这8种信号组合,所以就需要有8个存储单元来对应着8种选择信号,所以说,在地址线为N的时候就有2^N种组合,也就是要有2^N个单元与其相对应,所以存储器的容量与地址线的关系就是:N条地址线就有2^N的寻址能力 二十七.文件的存取方式有顺序存取和随机存取两种。磁带上的文件只能顺序存取,磁盘上的文件既可采用顺序方式也可用随机方式存取。 二十八.终端用户控制终端作业的执行大致有四个阶段:终端的连接、用户注册、控制作业执行和用户退出。 二十九.什么叫作业调度?作业调度选择作业的必要条件是什么? 三十.答:作业调度是指按一定的策略从“输入井”中选择资源能得到满足的作业装入主存储器,使作业能有机会占用处理器执行。作业调度选择作业的必要条件是系统中现有的尚未分配的资源能够满足该作业的资源要求。 三十一.作业调度与进程调度

三十二.作业调度的职责是把输入井中的作业装入主存.

三十三.进程调度的职责就是选择当前可占用处理器的进程. 三十四.死锁的防止(简单应用) 三十五.1、系统出现死锁必然出现以下情况: 三十六.1)互斥使用资源 三十七.2)占有并等待资源 三十八.3)不可抢夺资源 三十九.4)循环等待资源

四十.2、死锁的防止策略:破坏产生死锁的条件中的一个就可以了。

四十一.常用的方法有:静态分配、、按序分配、抢夺式分配3种。 四十二.当一个进程独占处理器顺序执行时,具有两个特性:一、封闭性二、可再现性 四十三.进程通信的含义:通过专门的通信机制实现进程间交换大量信息的通信方式称为“进程通信” 四十四.实现进程通信的基本原语:有两条:“send(发送)”和“receive(接收)”原语。

四十五.进程通信利用信箱通信时“发送”和“接收”原语的功能。

四十六.send(N,M)功能:把信件M送到指定的信箱N中。 四十七.receive(N,X)功能:从指定信箱N中取出一封信,存放到指定的地址X中。 四十八.信箱的基本结构:一个信箱由“信箱说明”和“信箱体”两部分组成。 四十九.从中断事件的性质出发,中断可以分为两大类: 五十.·强迫性中断事件包括硬件故障中断,程序性中断,外部中断和输入输出中断等

五十一.·自愿性中断事件是由正在运行的进程执行一条访管指令用以请求系统调用而引起的中断,这种中断也称为\"访管中断\"。

五十二.一般情况下,优先级的高低顺序依次为:硬件故障中断、自愿中断、程序性中断,外部中断和输入输出中断。

自愿中断的断点是确定的,而强迫性中断的断点可能发生在任何位置。

系统调用是用户程序请求操作系统为其服务的唯一形式。

一个在终端上登录成功的用户可以用shell命令来得到用户程序,用户程序用“trap”指令请求服务。 块设备和字符设备

块设备以块为单位每次与内存交换一组信息。块设备是用来存储信息的设备。字符设备以字节为单位与内存交换信息。字符设备是计算机用来接收外部信息或把处理好的信息传向外部的设备。块设备包括硬盘、软盘、磁带等,字符设备包括终端、打印机等。 这儿归类的是常考的分值比较大的题

目: 预测:会考到20-40分。 关于块号扇区磁道的问题 - 请1 2行对照的看: 一天24小时一小时有60分一分有60秒。

一张盘8个磁头号一个磁头号有10个柱面一个柱面有4个扇区。 显然。。。。

请出个题目。我来给你解。 关于fifo算法的问题 题目:某进程,若它对页面的访问串为:7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0

写出fifo算法实现页面更换,并给出缺页次数.(设在内存中占四个页架) 分析:1题目给了访问串7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 2题目给了内存中占四个页架 3题目给了用fifo算法来实现。 要求:画出算法实现。 fifo FIFO算法:(假设开始的4页已经装入了主存) 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0

队尾->2 2 3 3 4 4 4 0 0 0 1 2 2 2 7 7

1 1 2 2 3 3 3 4 4 4 0 1 1 1 2 2 0 0 1 1 2 2 2 3 3 3 4 0 0 0 2 2 队头------>7 7 0 0 1 1 1 2 2 2 3 4 4 4 0 0 被淘汰出内存的页面:7 0 1 2 3 4 整个的表格是怎么来的呢?请注意: 题目给了7,写7; 题目给了0,写0,7下一格; 题目给了1,写1,0下一格; 题目给了2,写2,1下一格; 注意:已经四个了从下到上是:7012 达到了2的要求:内存中占四个页架。 题目给了0,寻找有0,不写不变; 题目给了3,寻找没有3,写3,最底7的淘汰,现在是0123,发生了一次缺页中断,记下7;

题目给了0,寻找有0,不写不变; 题目给了4,寻找没有4,写4,最底0的淘汰,现在是1234,发生了一次缺页中断,记下0;

题目给了2,寻找有2,不写不变; 题目给了3,寻找有3,不写不变; 题目给了0,寻找没有0,写0,最底1的淘汰,现在是2340,发生了一次缺页中断,记下1;

题目给了3,寻找有3,不写不变; 题目给了2,寻找有2,不写不变; 题目给了1,寻找没有1,写1,最底2的淘汰,现在是3401,发生了一次缺页中断,记下2;

题目给了2,寻找没有2,写2,最底3的淘汰,现在是4012,发生了一次缺页中断,记下3;

题目给了0,寻找有0,不写不变; 题目给了1,寻找有1,不写不变; 题目给了7,寻找没有7,写7,最底4的淘汰,现在是0127,发生了一次缺页中断,记下4;

题目给了0,寻找有0,不写不变。 至此整个表格都做好了。详尽吧。再不会的要打屁屁了。 计算缺页中断率: 缺页中断次数除以页面更换次数。(就是人家给你的数的总数-1)*100% 6/18*100%=33.33% 好了。都完成了。 三句话总结: fifo算法是从上往下放数字, 有的很好,不动;

没有的就把最下面的挤出去(淘汰,发生缺页中断) 关于磁盘调度的问题 - 磁盘调度分为移臂调度和旋转调度。 旋转调度可以不掌握。基本考不到。 移臂调度算法包括以下四种: 1)先来先服务算法;(根据访问者提出访问请求的先后次序来决定执行次序。) 2)最短寻找时间优先调度算法;(从等

待的访问者中挑选寻找时间最短的那

个请求执行,而不管访问者的先后次序。) 3)电梯调度算法;(从移动臂当前位置沿移动方向选择最近的那个柱面的访问者来执行,若该方向上无请求访问时,就改变移动方向再选择。) 4)单向扫描调度算法。(从0柱面开始往里单向扫描,扫到哪个执行哪个。) 以上几种算法要求记住定义并根据访问条件,做出调度后的访问序列。 例:假定某磁盘共有200个柱面,编号为0-199,如果在为访问143号柱面的请求者服务后,当前正在为访问125号柱面的请求服务,同时有若干请求者在等待服务,它们每次要访问的柱面号为86,147,91,177,94,150,102,175,130 请回答下列问题: a.分别用先来先服务算法,最短寻找时间优先算法、电梯调度算法和单各扫描算法来确定实际的服务次序。

b.按实际服务计算上述算法下移动臂需移动的距离。

答:a当前柱面位置:125#,采用不同的调度算法服务满足次序如: 调度算法作业调度次序

先来先服务(125)86.147.91.177.94.150.102.175.130 想:先来先得,就是按题目把你的顺序列出就可。

最短寻找时间优先(125)130.147.150.175.177.102.94.91.86 想:寻找与执行位置最短的时间进行依次排列。 电梯调度(125)102.94.91.86.130.147.150.175.177 想:按当前位置找出最近的那个数,当前位置指向最近数决定方向,依次排列数字,排到尽头,再按当位置和最近数的相反方面依次排列数字。 单向扫描(125)130.147.150.175.177.86.91.94.102 想:由当前位置到从小到大排列数字,再将剩下的数由小到大排。 (2)上述各算法移动臂需移动的距离如: 表格2 调度算法移动臂的移动距离

先来先服务39+61+56+86+83+56+48+73+45=547

最短寻找时间优先5+17+3+25+2+75+8+3+5=143 电梯调度23+8+3+5+44+17+3+25+2=130 单向扫描5+17+3+25+2+22+1+86+5+3+8=177。注意此处有个199到0的+1。 有关地址线和存储器的容量的解释 - 无法理解:假定地址用m个二进制位表示,其中页内地址部分占用了n个二进制位。那么,每一个块的长度就是2^n(n个2相乘),也就是每一页有2^n(n个2相乘)个字节。 很好理解啊,它是说地址占N位,比如说地址占两位,那么第一个单元地址是00,第二个01,第三个是10,第四个是11,单元总共为2^2,若地址占4位,第一个单元为0000,第二个0001……,最后一个单元是1111,总单元数=2^4=16,地址若占了N位,那么相应的单元总数为2^N.我的总结能力比较弱,我这样说你能明白吗?

我们现在假设计算机只有3根地址线,那么对于3根地址线就有:000,001,010,011,100,101,110,111这么8种状态,当CPU需要在内存中调取数据的时候,就会在地址线上加载地址选择信号,那么也就是只有000,001,010,011,100,101,110,111这8种信号组合,所以就需要有8个存储单元来对应着8种选择信号,所以说,在地址线为N的时候就有2^N种组合,也就是要有2^N个单元与其相对应,所以存储器的容量与地址线的关系就是:N条地址线就有2^N的寻址能力 可变分区经常采用的主存分配算法 可变分区经常采用的主存分配算法 最先适应分配算法:简单地说,就是在分区表中顺序查找,找到够大的空闲区就分配。

最优适应分配算法:挑选一个能满足作业要求的最小空闲区。 最坏适应分配算法:挑一个最大的空闲区分给作业使用 用位示图进行磁盘存储空间的分配与回收 - 用位示图进行磁盘存储空间的分配与回收 (1)当有文件要存放到磁盘上时,查位示图中为“0”的位表示对应的磁盘块空闲可供使用。根据查到的位所在的字号和位号可计算出对应的块号同时在该位所在的字号和位号可计算出对应的块号同时在该们填上占用标志:“1”,然后对找到的块还要确定它属于哪个柱面、哪个磁头管的哪个扇区。于是,文件信息就可按确切的地址存放到找到的磁盘块上。

(2)当删除文件归还存储空间时,可以根据归还块的块号推算出在位示图中的位置,或由物理地址计算出对应的块号后再确定在位示图在的位置把这一位的占用标志“1”清成“0”,表示该块成为空闲块了。 关于记录成组的问题 关于记录成组一般来讲是以下的两种题。

1.假设磁带的记录密度为1600bpi(字节/英寸),每个逻辑长度为200字节,块与块之间的间隔为0.5英寸,请回答下面的问题。 (1)不采用成组操作时,磁带空间的利用率是多少? 用公式:每个正长/(每个正长+每个间隔长)=利用率。

间隔=1600*0.5=800(字节) 200/(200+800)=20%

不采用成组操作时磁带空间的利用率为20% (2)采用块因子为6作成组操作时,磁带空间的利用率为多少? 用公式:单个正长*块数/(单个正长*块数+每个间隔长)=利用率。 (200*6)/(200*6+800)=60%

采用成组操作时磁带空间的利用率为60% (3)为了使磁带空间的利用率大于80%,采用记录成组时,其块因子至少为多少? 设块因子为X,则: 200X/(200X+800)>0.8 得X>16

所以块因子至少为17.

2.现有一文件FILE-X其逻辑记录的大小为125字节,共有20个逻辑记录,文件系统把这个文件存储到磁盘上时,采用链接结构,磁盘的分块为512字节,请问: (1)采用什么方法可有效地利用磁盘空间?

用记录成组的方法可有效地利用磁盘空间。 (2)画出文件FILE-X在磁盘上的链接结构示意图(磁盘块号自定) (3)若用户要求读包含第1285字节的逻辑记录,文件系统将如何工作? 第一步,由[1285/(125*4)]=2余285 知逻辑记录在的第三个块上,把此块读入主存缓冲区。

第二步,285/125=2余35

可知文件系统从主存缓冲区中取出第3个记录传输给用户。 关于作业调度算法问题 常用的作业调度算法 (能够用这几种算法解应用题:结合作业调度的必要条件,运用各种作业调度算法,确定作业被选取的次序以及计算作业的实际完成时间和周转时间等。)

先来先服务算法:最简单的算法,它按照作业进入“输入井”的先后次序来挑选作业,先进入的作业优先被挑选。这里要注意的是,被选中的作业首先要满足资源需求的必要条件。 计算时间短的作业优先算法:要求用户对自己的作业需要计算的时间预先作出一个估计,在作业控制说明书中加以说明。作业调度时依据在输入井中的作业提出的计算时间为标准,优先选择计算时间短且资源能得到满足的作业。 响应比最高者优先算法:响应比=等待时间/计算时间 计算时间短的作业容易得到较高的响应比。等时间长的也会得到较高响应比,这样可以解决计算时间长的作业总是被后推的问题。 优先数调度算法:为每个作业确定一个优先数,资源能满足且优先数高的作业优先被选取,当几个作业有相同优称数时,对这些具有相同优先数的作业再按照先来先服务算法进行调度。

均衡调度算法:根据作业对资源的要求进行分类,作业调度从各类作业中去挑选,尽可能地使得使用不同资源的作业同时进行执行。

EG:某系统采用不能移动已在主存储器中作业的可变分区方式管理主存储器,现有供用户使用的主存空间100K,系统配有4台磁带机,有一批作业见下表: 作业序号进输入井时间要求计算时间需要主存容量申请磁带机数 1 10:00 25分钟15K 2台 2 10:20 30分钟60K 1台 3 10:30 10分钟50K 3台 4 10:35 20分钟10K 2台 5 10:40 15分钟30K 2台 该系统采用多道程序设计技术,对磁带机采用静态分配,忽略设备工作时间和系统进行调度所花的时间,请分别写出采用“先来先服务调度算法”和“计算时间最短者优先算法”选中作业执行的次序以及它们的平均周转时间。 解:先来先服务法如下表:

作业序号进输入井时间进入主存时间开始计算时间结束计算时间周转时间解释

1 10:00 10:10 10:00 10:25 25此时输入井中只有一个作业且满足资源要求,因此被选中运行。

2 10:20 10:20 10:25 10:55 35作业2到达输入井,满足资源要求,装入主存,等到作业1运行完毕进入运行态。

4 10:35 10:35 10:55 11:15 40由于作业3要求主存空间无法满足,因此作业4先行一步,运行期间作业5进入输入井,并满足资源要求,因此作业5进入主存就绪。

5 10:40 10:55 11:15 11:30 50作业3仍要等候,作业5可以运行。 3 10:30 11:30 11:30 11:40 70最后作业3装入主存并运行

平均周转时间为(22+35+40+50+70)/5=44分钟

按计算时间最短者优先算法如下表: 作业序号进输入井时间进入主存时间开始计算时间结束计算时间周转时间解释

1 10:00 10:10 10:00 10:25 25此时输入井中只有一个作业且满足资源要求,因此被选中运行。

2 10:20 10:20 10:25 10:55 35作业2到达输入井,满足资源要求,装入主存,等到作业1运行完毕进入运行。

5 10:40 10:55 10:55 11:10 30由于作业3要求主存空间无法满足,因此作业4先行一步装入主存,当作业2让出处理器的同时,作业5满足资源要求进入主存就绪。根据算法作业5先进入处理器运行。

4 10:35 10:35 11:10 11:30 55 3 10:30 11:30 11:30 11:40 70最后作业3装入主存并运行 平均周转时间:(25+35+30+55+70)/5=43分钟 在上题中,若允许移动已在主存储器中的作业,则作业被选中的次序又是怎样的呢?并计算出它们的平均周转时间?

解:本题中,由于作业3需要3台磁带机,因此即使允许移动主存中的作业,得到足够存储空间,但是由于静态分配

的策略,磁带机不足以让作业3满足。因此本题的结果和上题的结果是相同的。 有关PV操作的问题 PV操作 1、原语的概念及将PV操作定义为原语的原因。 把不可被中断的过程称为“原语”。 要用PV操作来管理临界区,首先要确保PV操作自身执行的正确性。为了使它们在执行时不发生交叉访问同一信号旦而可能出现的错误,特规定PV必须为原语。 2、PV操作实现进程同步与互斥时怎样定义信号量,信号量的物理含义及其作用

利用PV操作实现进程互斥时,用一个信号量与一组相关临界区对应。

利用PV操作实现进程同步时,每一个消息与一个信号量对应。 信号量的物理含义: S>0时表示可使用的资源数或表示可使用资源的进程数。

S=0时表示无资源可供使用或不允许进程进入临界区。

S<0时表示等待使用资源的进程个数或表示等待进入临界区的进程个数。 2用PV操作实现进程的互斥。 进程的互斥(综合应用) 1、进程互斥的含义:进程的互斥是指当有若干进程都要使用某一共享资源时,任何时刻最多只允许一个进程去使用,其他要使用该资源的进程必须等待,直到占用资源者释放了该资源。 PV操作是两个过程,由他们两个来控制一个信号S,假设S是红灯的个数。 每个进程进入临界区前都要先执行P操作。退出临界区时执行V操作。用下面的比喻很容易理解: 临界区门前有棵树(S) 用来挂红灯

进程想进CPU的门

先得上树取盏灯(调用一次P操作) 取下一个去敲门(S=S-1) 如果树上没灯取(S≤0) 树说欠你一盏灯(S为负时) 没辙只好外边排队等(Wait(S)) 得灯进程续运行

运行完了要出门(调用一次V操作) 马上还回一盏灯(S=S+1) 若有进程在催债(S≤0)

放个进去事完成(Release(S)) 2、实现进程互斥的工具--PV操作。 PV操作是由两个操作,即P操作和V操作组成。P操作和V操作是两个在信号量上进行操作的过程。假定用S表示信号量则把这两个过程记作P(S)和V(S),它们的定义如下: Procedue P(Var S:Semaphore); begin S:=S-1; if S<0 then W(S) end;{P}

Procedue V(Var S:Semaphore); begin S:=S+1;

if S<=0 then R(S) end;{V} 4、分析进程互斥问题并用PV操作实现进程互斥。 进程的互斥是指当有若干进程都要使用某一共享资源时,任何时刻最多只允许一个进程去使用,其他要使用该资源的进程必须等待,直到占用资源者释放了该资源。 在写程序时要注意以下几点: PV操作中间只执行相关临界区内容,不能把临界区外的程序段放到PV操作中间,否则会降低系统并发执行能力或引起系统瘫痪。

另外当有条件语句时要注意在临界区内每个条件分支出口均要调用V操 具体例题: 用进程通信的方法解决生产者与消费者之间的问题。 注:此类生产者与消费者问题是PV操作的主要题型。 分析及相关知识:若一个进程在某时刻的执行依赖于另一个进程的信件,则通信机制可起到进程同步的作用。用进程通信的方法来解决生产者消费者问

题时,生产者每生产一件物品后可把有关该物品的信息组织一封信发送给消费者;消费者每次接收一封信件发送给消费者,消费者每次接收一封信后可按信件中提供的信息去取物品消费.(像是个性化专业定做一样).于是,采取直接通信方式通过SEND和RECEIVE能把生产者和消费者联结起来.只要规定生产者每发出一封信后消费者才可取物品消费,也仅当消费者处理完一封信后才会接收下一封信件.那么,这种通信就达到了进程同步的目的. 程序结构如下: cobegin//1 process producer//2 begin//3

L1:生产物品;//4 组织信件M;//5

send(consumer,M);//6 go to L1//7 end;//8

process consumer//9 begin//10

L2:receiv(producer,x);//11 处理x中信件;//12 go toL2//13 end;//14 coend;//15 没学过程序的同学可用下面的方法理解和记忆. 如:第一行和最后一行表示固定格式表示开始和结束。

2到8是表示有关生产者,9到14表示有关消费者.

2第一个单词是固定的函数类定义.第二人单词是你要定义的函数的名称.这儿用的是生产者的名称.

3和8是固定格式表示开如和结束.与前面的不同的是前没有co

红字4到第7行是生产者依次做的事. 4是生产物品

5是处理信件.因为后面还要用到,所以后有个M,以后就可用M表示信件 6是信箱表示方式.

7重复执行从L1:到此句的内容. 消费者对应生产者生产者的写即可。 增加条件,改造题

生产者进程生产成品放入仓库,消费者进程从仓库中取出成品消费。假设有一个成品仓库,总共能存放100台成品,为了防止积压,仓库满的时候就停止生产。试用P、V操作实现本方案。 这是一道关于PV的常见题。以此为例,试讨论一下,关于PV的做法。 第一步:找出相关量:

这儿有:生产者生产商品,设为s商品入库消费者取出商品三个相关量。 第二步:描述相关量。找出两个相咬合的量 1)描述商品入库:一是仓库中可存放的设备,设为s1.初值为100。二是仓库中已经存放的设备,设为一变量s2。初值为0

2)描述生产者的动作。设为 生产者首先生产一设备。然后把设备送入仓库。在仓库门口有一装置用于进出的记录。进去时用p()表示,出去时用V()表示。

当s2=100时,停止生产。 3)描述消费者的动作。 与生产相对。

首先取出一设备。然后把设备给消费者。在仓库门口的装置用于进出的记录。进去时用p()表示,出去时用V()表示。 4)相咬合的量: 显然,本题s1与s2相咬合。 第三步,整理:注意有些可理解为固定格式。 begin

s,s1,s2:semaphore s1=100 s2=0 cobegin

proess生产者 begin

LI:生产设备; p(s1); 设备入库;

V(S2)

当入库数=100时,停止生产; go to L1 end;

proess消费者 begin l2:p(s2)

从仓库中取出一台设备 V(S1)

把设备销售给客户。 go to L2 end; coend 关于进入输入井,进程执行,死锁的问题 这类题目主要是据题目给的可用资源数。和用了资源数得到每次剩余的资源数,然后按题目的要求仿次找合适的往里放,进行运行。不合适的依次放在最后。

计算时要细心些。注意周转时间是从到达时到结束时。而不是仅仅从执行时到结束时 关于磁PAN-文件所用时间的问题 - 最近发现有N位学友问到这种题,现在作如下解答:

假定某磁盘的旋转速度是每圈20毫秒,格式化时每个盘面被分为10个扇区,现有个逻辑记录存放在同磁道上,安排如下表:

扇区号1 2 3 4 5 6 7 8 9 10 逻辑记录A B C D E F G H I J 处理程序要顺序处理这些记录,每读出一个记录后处理程序要花费4毫秒的时间进行处理,直到处理完这此记录。请问: 1顺序处理这完这10个记录总共花费了多少时间? 2请给出一种记录优化分布的方案,使处理程序能在最短的时间内处理完这个记录并计算优化颁后需要花费的时间。 答:(1)按照题目规定的存放方式,每个记录占用一个扇区,每个扇区信息时间为毫秒;

每条信息处理时间为4毫秒;

A:读取时间2+处理时间4=6(毫秒) B,C,,,J:延迟时间2*8+时间2+处理时间=22毫秒 所以处理这10个记录花费的总时间是: 10*(2+4)+9*16=204毫秒。 (2)要使处理程序能在最短时间内处理完这10个记录,可按AH,E,BI,F,CJ,G,D的顺序存放 在1~~10个扇区中。

此时上述个10记录花费的总时间是: 10*(2+4)=60毫秒。 此题中最重要的是对延迟时间的处理: A:读取时间2+处理时间4=6(毫秒) 当A处理完后,因为花了6秒,所以,磁头是在C的位置,但A处理完后,顺序处理的应该是B,所以。得转到B才能处理,根据他的速度,是2秒一个扇区,共工转8个扇区才能转到B,所以是2*8 四知识点总括 对常考常用的几个大的知识点的点出。 预测: 名词解释(即定义的大化。)一类 操作系统具有层次结构。。 层次结构最大特点是整体问题局部化来优化系统,提高系统的正确性、高效性使系统可维护、可移植。

主要优点是有利于系统设计和调试;主要困难在于层次的划分和安排。 多道程序设计系统 “多道程序设计系统”简称“多道系统”,即多个作业可同时装入主存储器进行运行的系统。在多道系统中一点必须的是系统须能进行程序浮动。所谓程序浮动是指程序可以随机地从主存的一个区域移动到另一个区域,程序被移动后仍不影响它的执行。多道系统的好处在于提高了处理器的利用率;充分利用外围设备资源;发挥了处理器与外围

设备以及外围设备之间的并行工作能

力。可以有效地提高系统中资源的利用率,增加单位时间内的算题量,从而提高了吞吐率。

程序浮动若作业执行时,被改变的有效区域依然能正确执行,则称程序是可浮动的。

进程进程是一个程序在一个数据集上的一次执行。由定义知进程关键组成是程序、数据集。进程通过一个控制块来被系统所指挥,因此进程由程序、数据集和进程控制块三部分组成。进程控制块是进程存在的唯一标志。进程是要执行的,据这点可分将进程的状态分为等待态然后是就绪态最后是运行态。 进程的基本队列也就是就绪队列和等待队列,(因为进程运行了,也就用不上排队了,也就没有运行队列了。) 重定位重定位即把逻辑地址转换成绝对地址。

重定位的方式有“静态重定位”和“动态重定位”两种。 (1)静态重定位 在装入一个作业时,把作业中的指令地址和数据地址全部转换成绝对地址。这种转换工作是在作业开始前集中完成的,在作业执行过程中无需再进行地址转换。所以称为“静态重定位”。 (2)动态重定位 在装入一个作业时,不进行地址转换,而是直接把作业装到分配的主区域中。在作业执行过程中,每当执行一条指令时都由硬件的地址转换机构转换成绝对地址。这种方式的地址转换是在作业执行时动态完成的,所以称为动态重定位。

动态重定位由软件(操作系统)和硬件(地址转换机构)相互配合来实现。动态重定位的系统支持“程序浮动”,而静态重定位则不能。

单分区管理除操作系统占用的一部分存储空间外,其余的用户区域作为一个连续的分区分配给用户使用固定分区的管理分区数目、大小固定设置上、下限寄存器逻辑地址+下限地址→绝对地址。

可变分区的管理可变分区管理方式不是把作业装入到已经划分好的分区中,而是在作业要求装入主存储器时,根据作业需要的主存量和当时的主存情况决定是否可以装入该作业。分区数目大小不定设置基址、限长寄存器

逻辑地址+基址寄存器的值→绝对地址。基址值≤绝对地址≤基址值+限长值页式存储管理主存储器分为大小相等的\"块\"。程序中的逻辑地址进行分\"页”,页的大小与块的大小一致。用页表登记块页分配情况逻辑地址的页号部分→页表中对应页号的起始地址→与逻辑地址的页内地址部分拼成绝对地址。由页表中的标志位验证存取是否合法,根据页表长度判断是否越界段存储管理程序分段每一段分配一个连续的主存区域,作业的各段可被装到不相连的几个区域中。设置段表记录分配情况逻辑地址中的段号→查段表得到本段起始地址+段内地址→绝对地址由段表中的标志位验证存取是否合法,根据段表长度判断是否越界

页式虚拟存储管理类似页式管理将作业信息保存在磁盘上部分装入主存类似页式管理:逻辑地址的页号部分→页表中对应页号的起始地址→与逻辑地址的页内地址部分拼成绝对地址。 若该页对应标志为0,则硬件形成\"缺页中断\"先将该页调入主存类似页式管理段式虚拟存储管理类似段式管理将作业信息保存在磁盘上部分装入主存类似段式管理存储介质是指可用来记录信息的磁带、硬磁盘组、软磁盘片、卡片等。存储介质的物理单位定义为“卷”。存储设备与主存储器之间进行信息交换的物理单位是块。块定义为存储介质上存放的连续信息所组成的一块区域。逻辑上具有完整意义的信息集合称为“文件”。用户对文件内的信息按逻辑上独立的含义划分的信息单位是记录,每个单位为一个逻辑记录。 2、文件的分类

文件可以按各种方法进行分类: 按用途系统文件、库文件、用户文件 按保护级别可执行文件、只读文件、读写文件

按信息流向输入文件、输出文件、输入输出文件

按存放时限临时文件、永久文件、档案文件

按设备类型磁盘文件、磁带文件、卡片文件、打印文件

按文件组织结构逻辑文件、物理文件(顺序文件、链接文件、索引文件) 文件结构文件结构分为逻辑结构和物理结构 逻辑结构

用户构造的文件称为文件的逻辑结构。如用户的一篇文档、一个数据库记录文件等。逻辑文件有两种形式:流式文件和记录式文件。 流式文件是指用户对文件内信息不再划分的可独立的单位,如我们的word文件,图片文件等。整个文件是以顺序的一串信息组成。

记录式文件:是指用户对文件内信息按逻辑上独立的含义再划分信息单位,每个单位为一个逻辑记录。记录式文件可以存取的最小单位是记录项。每个记录可以独立存取。这个在数据库中我们学得比较多,容易理解。 2、物理结构 由文件系统在存储介质上的文件构造方式称为文件的物理结构。物理结构有 1)顺序结构:在磁盘上就是一块接着一块地放文件。逻辑记录的顺序和磁盘顺序文件块的顺序一致。顺序文件的最大优点是存取速度快(可以连续访问)。 2)链接结构:把磁盘分块,把文件任意存入其中,再用指针把各个块按顺序链接起来。这样所有空闲块都可以被利用,在顺序读取时效率较高但需要随机存取时效率低下(因为要从第一个记录开始读取查找)。

3)索引结构:磁盘不分块,文件的逻辑记录任意存放在磁盘中,通过一张“索引表”指示每个逻辑记录存放位置。这样,访问时根据索引表中的项来查找磁盘中的记录,既适合顺序存取记录,也可以随机存取记录,并且容易实现记录的增删和插入,所以索引结构被广泛应用。

记录的成组与分解 1记录的成组与分解的原因:由于磁盘块的大小是预先划分好的,大小固定,而逻辑记录的大小是用户文件性质决定的,不一定和块大小一致。 2记录的成组:把若干个逻辑记录存入一个块的工作称为“记录的成组”。每块中逻辑记录的个数称“块因子”. 3、记录的分解:这是记录成组的一个逆过程。经程是先从磁盘中找到记录所在的块,并将本块读入主存缓冲区,再从缓冲区取出所需要的记录送到用户工作区。如果用户所需的记录已经在缓冲区中,则不需要启动外设读块信息,这也可以提高系统工作效率。

1、作业:我们把用户要求计算机系统处理的一个问题称为一个“作业” 2、作业步:完成作业的每一个步聚称为“作业步”。 作业控制方式 1、作业控制方式,包括批处理方式和交互方式。 批处理控制方式:也称脱机控制方式或自动控制方式。就是一下子交待任务,执行过程中不再干涉。

批处理作业:采用批处理控制方式的作业称为“批处理作业” 批处理作业进入系统时必须提交:源程序、运行时的数据、用作业控制语言书写的作业控制说明书。

交互控制方式:也称联机控制方式。就是一步一步地交待任务。做好了一步,再做下一步。

2、批处理作业的控制(领会)

1)按用户提交的作业控制说明书控制作业的执行。

2)一个作业步的工作往往由多个进程的合作来完成。

3)一个作业步的工作完成后,继续下

一个作业步的作业,直至作业执行结束。 3、交互式作业的管理(领会) 1)、交互式作业的特点:交互式作业的特点主要表现在交互性上,它采用人机对话的方式工作。 2)、交互式作业的控制:一种是操作使用接口,另一种是命令解释执行。 操作使用接口包括操作控制命令,菜单技术,窗口技术

命令的解释执行一类是操作系统中的相应处理模块直接解释执行;另一类必须创建用户进程去解释执行。 死锁: 若系统中存在一组进程(两个或多个进程),它们中的每一个进程都占用了某种资源而又都在等待其中另一个进程所占用的资源,这种等待永远不能结束,则说系统出现了“死锁”。或说这组进程处于“死锁”状态。 相关临界区 1、并发进程中与共享变量有关的程序段称为“临界区”。并发进程中涉及到相同变量的那些程序段是相关临界区 2、对相关临界区的管理的基本要求。 对相关临界区管理的基本原则是:如果有进程在相关临界区执行,则不让另一个进程进入相关的临界区执行。 进程同步的含义:进程的同步是指并发进程之间存在一种制约关系,一个进程的执行依赖另一个进程的消息,当一个进程没有得到另一个进程的消息时应等待,直到消息到达才被唤醒。 中断:一个进程占有处理器运行时,由于自身或自界的原因使运行被打断,让操作系统处理所出现的事件到适当的时候再让被打断的进程继续运行,这个过程称为“中断”。

中断机制在它执行程序的时候,如果有另外的事件发生(比如用户又打开了一个程序)那么这时候就需要由计算机系统的中断机制来处理了。

中断机制包括硬件的中断装置和操作系统的中断处理服务程序。

中断响应(硬件即中断装置操作)处理器每执行一条指令后,硬件的中断位置立即检查有无中断事件发生,若有中断事件发生,则暂停现行进程的执行,而让操作系统的中断处理程序占用处理器,这一过程称为\"中断响应\"。中断屏蔽 中断屏蔽技术是在一个中断处理没有结束之前不响应其他中断事件,或者只响应比当前级别高的中断事件。

存储保护:防止主存储器稳中有降个程序的相互干扰和保护稳中有降区域内的信息安全,限定各程序在规定的主存区域内执行,称为存储保护。

特权指令:即可能影响系统安全的指令。全文是为保护输入输出的完整性,把“启动I/O”等的一类可能影响系统安全的指令定义为特权指令。优点在于:这种方式不但保证安全地使用外围设备,正确地传送信息,而且可减少用户为启动设备而必须了解外围设备特性以及启动等工作,大大方便了用户。) 文件的保护与保密 1)文件的保护是防止文件被破坏。文件的保密是防止文件被窃取。 2)文件的保护措施: 可以采用树形目录结构、存取控制表和规定文件使用权限的方法。

3)文件的常用保密措施:隐藏文件目录、设置口令和使用密码(加密)等。 UNIX系统结构 1、UNIX的层次结构。 UNIX可以分为内核层和外壳层两部分。//内核层是UNIX是核心。/外壳层由shell解释程序(即为用户提供的各种命令。)、支持程序设计的各种语言(如C、PASCAL和BASIC等)、编译程序和解释程序、实用程序和系统库等组成。 UNIX系统的主要特点。 短小精悍//简洁有效//易移植//可扩充//开放性 线程的概念 线程是进程中可独立执行的子任务,一

个进程中可以有一个或多个线程,每个

线程都有一个唯一的标识符。

进程与线程有许多相似之处,所以线程又称为轻型进程.

支持线程管理的操作系统有Mach,OS/2,WindowsNT,UNIX等。 通道命令

通道命令规定设备的操作,每一种通道命令规定了设备的一种操作,通道命令一般由命令码/数据

主存地址/传送字节个数及标志码等部分组成。 通道程序

是一组通道命令规定通道执行一次输入输出操作应做的工作,这一组命令就组成了一个通道程序。 管道机制 把第一条命令的输出作为第二条命令的输入,如此进行连接的技术 进程的调度

我们使用不同的调度是为了优化,具体说来是提高处理器利用率,增大吞吐量,减少等待时间,缩短响应时间。 页式存储管理中为什么要设置页表和快表? 在页式存储管理中,主存被分成大小相等的若干块,同时程序逻辑地址也分成与块大小一致的若干页,这样就可以按页面为单位把作业的信息放入主存,并且可以不连续存放,为了表示逻辑地址中的页号与主存中块号的对应关系,就需要为每个作业建立一张页表,。 页表一般存放在主存中,当要按给定的逻辑地址访问主存时,要先访问页表,计算出绝对地址,这样两次访主存延长了指令执行周期,降低了执行速度,而设置一个高速缓冲寄存器将页表中的一部分存放进去,这部分页表就是快表,访问主存时二者同时进行,由于快表存放的是经常使用的页表内容,访问速度很快,这样可以大大加快查找速度和指令执行速度。 虚拟存储器 虚拟存储器是为“扩大”主存容量而采用的一种设计技巧,就是它只装入部分作业信息来执行,好处在于借助于大容量的辅助存储器实现小主存空间容纳大逻辑地址空间的作业。

虚拟存储器的容量由计算机的地址结构(地址总线位数)决定。如32位的,则最大的虚存容量为2^32=4294967296B=4GB

叙述页式虚拟存储器的基本原理。 页式虚拟存储器是在页式存储的基础上实现虚拟存储器的,其工作原理是: 首先把作业信息作为副本存放在磁盘上,作业执行时,把作业信息的部分页面装入主存,并在页表中对相应的页面是否装入主存作出标志。

作业执行时若所访问的页面已经在主存中,则按页式存储管理方式进行地址转换,得到绝对地址,否则产生“缺页中断”由操作系统把当前所需的页面装入主存。

若在装入页面时主存中无空闲块,则由操作系统根据某种“页面调度”算法选择适当的页面调出主存换入所需的页面。

死锁的防止(简单应用) 1、系统出现死锁必然出现以下情况: 1)互斥使用资源 2)占有并等待资源 3)不可抢夺资源 4)循环等待资源 2、死锁的防止策略:破坏产生死锁的条件中的一个就可以了。 常用的方法有:静态分配、、按序分配、抢夺式分配3种。

死锁的避免(简单应用) 1、死锁的避免是让系统处于安全状态,来避免发生死锁。

安全状态:如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于“安全状态”。 银行算法是怎样避免死锁的: 计算机银行家算法是通过动态地检测系统中资源分配情况和进程对资源的需求情况,在保证到少有一个进程能得到所需要的全部资源,从而能确保系统

处于安全状态进,才把资源分配给申请

者,从而避免了进程共享资源时系统发生死锁。 采用银行家算法时为进程分配资源的方式 1)对每一个首次申请资源的进程都要测试该进程对资源的最大的需求量。如果系统现存资源可以满足他的最大需求量,就按当前申请量为分配资源。否则推迟分配。

2)进程执行中继续申请资源时,先测试该进程已占用资源数和本次申请资源总数有没有超过最大需求量。超过就不分配。 若没有超过,再测试系统现存资源是否满足进程尚需的最大资源量,满足则按当前申请量分配,否则也推迟分配。 总之,银行家算法要保证分配资源时系统现存资源一定能满足至少一个进程所需的全部资源。 中断的响应。

中断响应(硬件即中断装置操作) 处理器每执行一条指令后,硬件的中断位置立即检查有无中断事件发生,若有中断事件发生,则暂停现行进程的执行,而让操作系统的中断处理程序占用处理器,这一过程称为\"中断响应\"。 中断响应过程中,中断装置要做以下三项工作: 1)是否有中断事件发生 2)若有中断发生,保护断点信息 3)启动操作系统的中断处理程序工作 中断装置通过\"交换PSW\"过程完成此项任务,

4中断处理(软件即操作系统操作) 操作系统的中断处理程序对中断事件进行处理时,大致要做三方面的工作: 1)保护被中断进程的现场信息 2)分析中断原因

根据旧PSW的中断码可知发生该中断的具体原因。

3)处理发生的中断事件

请求系统创建相应的处理进程进入就绪队列。 阐述硬件的中断装置的作用。 答:中断是计算机系统结构一个重要的组成部分。在中断机制中的硬件部分(中断装置)的作用就是在CPU每执行完一条指令后,判别是否有事件发生,如果没有事件发生,CPU继续执行;若有事件发生,中断装置中断原先占用CPU的程序的执行,把被中断程序的断点保存起来,让操作系统的处理服务程序占用CPU对事件进行处理,处理完后,再让被中断的程序继续占用CPU执行下去。

(所以中断装置的作用总的来说就是使操作系统可以控制各个程序的执行。) 操作系怎样让多个程序同时执行? 答:中央处理器在任何时刻最多只能被一个程序占用。通过中断装置

系统中若干程序可以交替地占用处理器,形成多个程序同时执行的状态。利用CPU与外围设备的并行工作能力,以及各外围设备之间的并行工作能力,操作系统能让多个程序同时执行。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top