G.L.Kotkin1),V.G.Serbo1),andV.I.Telnov2)
1)
NovosibirskStateUniversity,630090,Novosibirsk,Russia2)
BudkerInstituteofNuclearPhysics,630090,Novosibirsk,Russia
May14,2002
Abstract
Inanumberofpapersanattractivemethodoflaserpolarizationofelectrons(positrons)atstorageringsorlinearcollidershasbeenproposed.WeshowthatthesesuggestionsareincorrectandbasedonerrorsinthesimulationofmultipleComptonscatteringandinthecalculationoftheComptonspin-flipcrosssections.Wearguethattheequilibriumpolarizationinthismethodiszero.
1Introduction
ExperimentsatSLChaveshowngreatpotentialofpolarizede±beamsforinvestigationofnewphysicalphenomena.Inallprojectsoffuturee+e−,e−e−,γγandγelinearcolliders[1],electronandpositronbeamswithhighdegreeofpolarizationareforeseen,thoughthisisnotaneasytask.Thatiswhyanynewmethodsforobtainingpolarizede±beamsareverywelcome.
Therearetwowell–knownandrecognizedmethodsforproductionofpolarizedbeamsforlinearcolliders.Inthefirstmethod,electronbeamswithapolarizationof80%(maybeevenhigher)areobtainedusingphotoguns[2].Anothermethodofpolarization,suitablebothforelectronandpositronbeams,isbasedonatwo-stepscheme[3].Atthefirststep,theunpolarizedelectronbeampassesthroughahelicalundulator(orcollideswithcircularlypolarizedlaserlight)andproducesphotonswithmaximumenergyofabout30÷50MeV.Thesephotonshaveahighdegreeofcircularpolarizationinthehighenergypartofthespectrum.Thenthesephotonspassthroughathintungstentargetandproducee+e−pairs.Atthemaximumenergies,theseparticleshaveahighdegreeoflongitudinalpolarization.Theexpectedpolarizationofelectronandpositronbeamsinthismethodis45÷60%[4,5].
Additionaly,inanumberofpapersanewattractivemethodforproductionofpolarizedelectron1beams,basedontheprocessofmultipleComptonscatteringofultra-relativistic
electronsonthecircularlypolarizedlaserphotons,wasdiscussed.Hereoneshoulddistin-guishbetweentwopossibilities:polarizationofthebeamatthecostofalossinintensityandpolarizationwithoutlossofintensity.Thelattercaseisthesubjectofthepresentpaper.
ItiswellknownthatinComptonscatteringtheelectronsofdifferenthelicitiesareknockedoutofthebeamdifferently.Asaconsequence,afterremovalofthescatteredelectrons,theelectronbeamcangetaconsiderablepolarizationattheexpenseofacon-siderablelossofitsintensity.Adetailedconsiderationofthismethodwasgivenin[8].Thoughthebasicideaofthismethodiscorrect,itwasnotusedinpracticebecausethelossesinintensityduringthepolarizationprocessaretoolarge.
InthispaperwecriticallyconsideranotherproposalofbeampolarizationwhichisbasedonmultipleComptonscatteringofelectronsonlaserphotonswithoutlossofinten-sity.ItimpliesthatduringasingleComptonscatteringtheenergylossofanelectronissmallandtheelectronscatteringangleissmallaswell;therefore,thescatteredelec-tronsremaininthebeam.Itmeansthattheelectronenergyisoftheorderof1GeVforlaserlightwithaphotonenergyofabout1eV.Suchproposalsweregiveninpa-pers[9,10,11,12].Theywerecitedinanumberofpapers(seeRefs.[13],forexample)andattractedattentionattheSnowmass2001conference.Itwassuggestedtoimplementthismethodeitheronastoragering(wheretheelectronbeamcollideswithlaserbeamsmanytimesatasinglepoint)oratalinearcollider(wheretheelectronbeamwouldcollidewithlaserbeamsatseveralpoints)withreaccelerationbetweenthem.
ThetheoreticalconsiderationoftheprocessofmultipleComptonscatteringinpa-pers[9]–[12]isbasedontwodifferentapproaches.Thefirstapproachexploitsthefactthatthescatteredelectronsarepolarizedeveniftheinitialelectronbeamisunpolar-ized.Sincethescatteredelectronsdonotleavethebeam,multiplecollisionswithlaserphotonswouldappeartoleadtoagrowthofthemeanelectronbeampolarization.Thequantitativeconsiderationofthisideainpapers[10,11]resultedin
•Conclusion1[10,11].Alongitudinalpolarizationofelectrons(positrons)upto100%canbeachievedinarelativelyshorttime.
InSect.3weexplaintheoriginofthemistakethatleadto“Conclusion1”.Brieflyspeaking,insimulationofmultipleComptonscatteringoneshouldnotonlyconsiderthemultipleComptonscatteringofthesameelectronbutalsotakeintoaccountthefactthatthepolarizationofunscatteredelectronschangesinthelaserwaveaswell.ThecorrectsimulationprocedureformultipleComptonscattering(Sect.2)leadstozeropolarizationofthefinalelectronbeam.
Inthesecondapproach,onlytheequilibriumpolarizationoftheelectronbeamaf-termultiplepassesthroughthelaserbeamwasconsidered.Letw+−andw−+betheprobabilitiesforComptonscatteringwithagivenelectronspin-flip.Itisnotdifficulttoshow(seeSect.2.2)thattheelectronbeamgetsthemaximalequilibriumpolarization(f)ζz=(w−+−w+−)/(w−++w+−).Thecorrespondingprobabilitieshavebeencalculatedinpapers[9,12]withthefollowing
•Conclusion2[9,12].Thelongitudinalpolarizationofelectrons(positrons)aslargeas62.5%canbeachieved.
InSect.4weshowthatConclusion2isduetoanerrorinthecalculationoftheComp-tonspin-flipcrosssections.Theerrorisconnectedtotheincorrecttransitionbetween
2
thecolliderframe(CF)andtherestframeoftheinitialelectron(RFIE).Thecorrectresultcorrespondstow+−=w−+,therefore,thediscussedprocessoflaserpolarizationisimpossible.
Below,inSect.2,wepresentasetofformulaeforComptonscatteringthattakesintoaccounttheparticlepolarizationfromRef.[6],aswellasashortdescriptionofthesimulationprocedureforthemultipleComptonscatteringfromRef.[7],whichareusefulforquantitativeconsiderationofthismethod.Hereweshowthatscatteringoflaserphotonsdonotleadtopolarizationofelectronbeams,infacttheyleadonlytodepolarization.InSect.3and4weexplicitlyshowtheoriginofmistakesinthepreviouspapersonthissubject.
2
2.1
Polarizationoffinalelectrons
PolarizationoffinalelectronsinsingleComptonscattering
e(p)+γ(k)→e(p′)+γ(k′)
(1)
WeconsiderthebasicComptonscattering
intheCF,inwhichanelectronwithenergyE∼1GeVcollidesahead-onwithalaserphotonofenergyω∼1eV.
LetusintroducesomenotationrelatedtotheComptonscattering(1)inCF.Wechoosethequantizationaxis(z-axis)alongtheinitialelectronmomentump(i.e.,anti-paralleltothelaserphotonmomentumk).LetPc=+1bethemeanhelicityofthecircularly
′
)bethepolarizationvectorsofthepolarizedlaserphotons,ζ=(0,0,ζz)andζ′=(0,0,ζz
electronintheinitialandfinalstates.ItisconvenienttodescribetheComptonscatteringbytheinvariants
2pk2p′kx==
pk
,y=
ω′
m2e
x+1
.(4)
ForE∼1GeVandω∼1eV,thevalueofx∼0.015,thereforehereafterweassume
x≪1,
E−E′=ω′≪E.
(5)
InRFIE,theenergyofthelaserphotonxme/2issmallincomparisonwiththeelectron
mass:xme/2≪me;andthereforethetransversemomentaaresmallaswell:
|p′⊥|=|k′⊥| θe≈ |p′⊥| 2E ≈2ω (6) TheComptoncrosssectioninthecolliderframefortheaboveconditionshasbeengivenin[6]: dσx [(1+ζzζz′)F1+(ζz+ζz′)PcF2+ζzζz′ F3],(8)2F1 s2 1= 1−y ,F3=− yr(1−r),c=1−2r,r= y N.(10) ++N− WhentheelectronbeamtravelsthepathdzinthelaserbeamwiththelaserphotondensitynL(z),thechangeofnumbersN±(z)isgivenbythebalanceequationsderivedbythefollowingsimpleconsideration.Areductionofthenumberofelectronswithζz=+1inthebeamisdeterminedbythequantityN+(z)(dw+++dw+−),where dwζzζ′z=2σ(ζz,ζz ′ )nL(z)dz(11) istheprobabilitythatanelectronwithacertainζzisscatteredonthepathdzwiththe transitiontoacertainζz′ (hereweassumealsoacertainPc=+1).Thecoefficient2isduetothefactthattheelectronandthelaserphotontraveltowardseachotherwiththespeedoflight.Ontheotherhand,thesumN+(z)dw+++N−(z)dw−+representsthe numberofscatteredelectronswithζ′ aresult,thetotalchangeofthez=+1. Asnumberofelectronswithζz=+1isequalto dN+(z)=−N+(z)(dw+++dw+−)+N+(z)dw+++N−(z)dw−+ (12) =−N+(z)dw+−+N−(z)dw−+ and,similarly, dN−(z)=−N−(z)dw−++N+(z)dw+−. (13) Sinceintheconsideredmethodthescatteredelectronsremaininthebeam,thesumN++N−=Nedoesnotchange: dN+(z)+dN−(z)=0, (14)whilethemeanlongitudinalpolarization(10),generallyspeaking,changesas Nedζz=dN+(z)−dN−(z)=−2N+(z)dw+−+2N−(z)dw−+. (15) Balanceequations(12)–(15)aresimplifiedintwoparticularcases.First,iftheinitialelectronbeamisunpolarized,N+(z)=N−(z)=Ne/2,itgets(aftertravelingthepathdz)thepolarization dζz=dw−+−dw+−.(16)Second,letusconsidertheequilibriumpolarizationoftheelectronbeam(whichisachieved aftermultiplepassingoftheelectronbeamthroughthelaserbeam).Inthiscase,dN+=dN−=0or N+dw+−=N−dw−+.(17)Fromthisequationoneobtainstheequilibriumpolarizationdegreeoftheelectronbeam ζw−+−w+− z(f)= ζ=−4σ(ζz=+1,ζz′ =−1)nz L(z)dz (22) fromwhichitfollowsthatthepolarization|ζz|isreducedaftertravelingthepathdz. Notethattheresult(21)isduetothespecificstructureofEq.(8):thecoefficientin frontofζzPcinthisequationpreciselycoincideswiththecoefficientinfrontofζz′ Pc. 2.3AschemeforsimulationofmultipleComptonscattering Insomeproblemssuchasconversionofelectronstophotonsatphotoncolliders,lasercooling,etc.,itisnecessarytocalculatebeamparametersaftermultipleactsofComptonscattering.Letanelectronbeamtraversesaregionwherelaserlightisfocused.ItisclearthattheenergiesoftheseelectronsaswellastheirpolarizationsvaryduetoComptonscattering. However,whentheelectronpassesthroughthelaserbeam,thepolarizationvariesalsoforthoseelectronswhichconservetheirenergiesanddirectionsofmotion(unscatteredelectrons).Thiseffectisduetotheinterferenceoftheincomingelectronwaveandtheelectronwavescatteredatzeroangle.ThechangeintheelectronpolarizationdependsnotonlyontheComptoncrosssectionbutontherealpartoftheforwardComptonamplitudeaswell.SuchaneffectwasconsideredinRef.[7]. BothoftheseeffectsshouldbetakenintoaccountinsimulationofmultipleComptonscattering.Itcanbetakenintoaccountinthefollowingway.TheelectronstateisdefinedbythecurrentvaluesofitsenergyE,thedirectionofitsmomentum(alongthez-axis)anditsmeanpolarizationvectorζ.Theprobabilitytoscatteronthepathdzisequalto dw=2σ(E,ζz)nL(z)dz, (23) whereσ(E,ζz)isthetotalcrosssectionoftheComptonscatteringprocess.Then,asusual,onecansimulatewhetherthescatteringtakesplaceonthispathdzornot. Ifthescatteringdoestakeplace,then,usingknownformulaefortheComptoncrosssectioninCF(seeRef.[6]),onecancalculateanewvalueoftheelectronpolarizationvectorζ(f)andotherparameters. Ifthescatteringdoesnotoccur,onestillhastochangetheelectronpolarizationvector.4Thevariationofelectronpolarizationinthelaserwaveforageneralcasewasconsideredin[7].Followingthatpaper,thechangeoftheelectronpolarizationvectoroftheunscatteredelectronis 2 dζx=(Rζy+Iζzζx)Pc2πrenLdz, 2 nLdz,dζy=(−Rζx+Iζzζy)Pc2πre 22 dζz=−I(1−ζz)Pc2πrenLdz, (24) (25)(26) wherethefunctionsI=I(x)andR=R(x)areequalto: I== 4 22 x 1−y dy= 5 x+1 − 1 (27) ln(x+1)− Thenecessityofthisstepcanalsobeseenfromthefollowingconsideration.ThevalueoftheComptoncrosssectiondependsonpolarizationsofelectronandlaserbeams.Iftheelectronbeamwasinitiallyunpolarized,then,aftertheComptonscatteringofoneelectron,therest(unscattered)partofthebeamgetssomepolarization(seeSect.2.2).Thatisjustbecauseelectronswithdifferentpolarizationshavedifferentscatteringprobabilities.Inotherwords,thelaserbeam“selects”preferablyelectronswithacertainpolarization.Inparticular,equation(26)forthelongitudinalpolarizationcanbeobtainfromthebalanceequationsdiscussedabove. 6 2 2 R(x)= x F(x−1)− 1++ x (x2−1)2 3x , (28) with x F(x)= ln|1+t| 0 2 σunpol+ πr2eI(x)ζz ′ ,(30) whereσunpolistheComptoncrosssectionforunpolarizedbeams.Therefore,thescattered electronbecomespolarizedafterthefirstscattering,anditsmeandegreeofpolarizationis ζπr2z(f) = eI(x)3RemarkonConclusion1 NowwearereadytoshowtheoriginoftheerrorinConclusion1.LetusdescribetheprocedureofthenaivesimulationofthemultipleComptonscattering.WeconsiderthecasewhenintheCFthepolarizationvectorsoftheinitialandfinalelectronshavez-componentsonlyandtheparameterxissmall.ThecorrespondingComptoncrosssectionwithanaccuracyuptothetermsoftheorderofxcanbeeasilyobtainedfrom(8): σ= 4 4 ′ Pc(ζz+ζz). (35) Iftheinitialelectronisunpolarized(ζz=0)andthelaserphotoniscircularlypolarized (Pc=+1),then 4′ σ=,(36)ζz 4′′ i.e.thecrosssectionissomewhatlargerforζz=−1thanforζz=+1.Therefore,thescatteredelectronbecomespolarizedafterthefirstscatteringanditsmeandegreeofpolarizationis x(f) ζz=− (4/x)+N ,(38) whichcanreach100%forN≫4/x.ThisfactisthebasisforConclusion1. This“polarization”isnotconnectedwiththeelectronspin-flip,itisduetosomedifferencesinthecrosssections:thepolarizedlaserbeamselectselectronswithacertain(inourcase,negative)polarization.ButsuchanaivesimulationofthemultipleComptonscatteringisincorrectbecauseitdoesnottakeintoaccountthefactthatunscatteredelectronsbecomepolarizedintheoppositedirection.Thecorrectprocedureforthissimulationisdescribedintheprevioussectionandleadstozeropolarization. 4RemarkonConclusion2 InSect.2.1wehaveshownthattheequilibriumpolarizationofelectronsinthediscussedmethodiszero.Below,weshowtheoriginofthemistakethatledtoConclusion2.Weremindthatourresult(21)hasbeenobtainedintheCF.Tothecontrary,theauthorsofConclusion2hadobtainedtheirresult(20)intheRFIE.BelowwedemonstratehowtoobtainourresultinRFIEandshowthattheerrorinConclusion2isconnectedwithinaccuratetransitionfromCFtoRFIE. Inourconsideration,weusetheelectronpolarizationvectors5ζandζ′,whichinCFhavetheforms ζ=(0,0,±1),ζ′=(0,0,∓1).(40) ζp me ζ′p′ me ,ζ+p,ζ+p ′′ ItisnotdifficulttoshowthatinRFIEthevectorζhasthesameform,butthevectorζ′hasanotherform: ζ′⊥ =∓ p′⊥ me , ′ζz =∓1− (p′⊥)2 me(E′+me) ≈∓ p′⊥ me(E′+me) ≈ζ′⊥, (43) sinceinRFIEwehave|p′|/me≪1. TheneededComptoncrosssectioninRFIEcanbefoundinthetextbook[15](seeEqs.(87,22)and(87,23)): dσ 4 ω′ dΩ = 2re ω 2 fz−gz+g⊥ k′⊥ ω+ω′ me g⊥ k′⊥ m2e (1−cosϑ)sin2ϑ≈− meω 2 (1−cosϑ)sin2ϑ, (47) =0,(49) dΩ whichisinagreementwiththeconclusion(21)inCF. Thewrongconclusion(20)wasobtainedbecausethesameform(40)wasusedforthevectorζ′bothintheCFandintheRFIE.ItisequivalenttoomittingthelastterminthesquarebracketinEq.(45). Thus,thecalculations,performedinCFaswellasinRFIE,giveusthesameresult(21).We,therefore,concludethattheclaim(20)isbasedonaninaccuratetransitionfromCFtoRFIE. 9 5Summary WehaveshownthatthemultipleComptonscatteringofelectronsoncircularlypolarizedlaserphotonsatusualstorageringsorlinearacceleratorsdoesnotleadtopolarizationofelectronbeams.Statementsbysomeauthorsaboutobtainabilityofhighdegreesofpolarizationareexplainedbymistakesintheircalculationprocedures.WehaddiscussionswithE.G.BessonovandA.P.Potylitsyn,andtheyagreedwithourcriticism. InthispaperwehaveconsideredthelinearComptonscattering(thescatteringofanelectrononasinglelaserphoton).ItistechnicallypossibletorealizeconditionswhichcorrespondtothenonlinearComptonscattering(thescatteringofanelectrononseverallaserphotons).TheeffectivecrosssectionforthenonlinearComptonscatteringfromRef.[16]hasthesamespecificstructureasEq.(8)butwithmuchmorecomplicatedfunctionsF1,2,3.Fromthis,onecaneasilyobtaintheresult(21),whichmeansthattheequilibriumpolarizationofelectronsiszerointhethecaseofthenonlinearComptonscatteringaswell. Oneadditionalremark.Thereisnopolarizationoftheelectronbeamasawholeintheconsideredscheme,however,itdoesnotclosethepossibilitytouselasersforpolarizationofelectronbeamsinotherschemes.Forexample,ithasbeenshowninRef.[14]thatusingspeciallyarrangedspin-orbitcouplingindampingrings(byaddingasolenoid),apolarizationofabout60%maybereached.ThismethodisbasedonthedifferenceintheComptoncrosssectionsforelectronswithdifferentvaluesoftheirhelicities,onthefactthatscatteredelectronshavelowerenergycomparedtounscatteredelectrons,andondependenceofthespinprecessionangleontheelectronenergy.Thismethodisnotsimple,andistooslowforpreparationofbeamsforlinearcolliders. Acknowledgement WeareverygratefultoE.Bessonov,R.Brinkmann,V.Katkov,A.P.Potylitsyn,E.L.Sal-din,A.N.SkrinskyandV.Strakhovenkoforusefuldiscussions.ThisworkissupportedinpartbyINTAS(code00-00679),RFBR(code00-02-17592and00-15-96691)andbySt.Petersburggrant(codeE00-3.3-146). References [1](NLC)LinearcolliderphysicsresourcebookforSnowmass2001,ByAmericanLinear ColliderWorkingGroup,T.Abeetal.,SLAC-R-570,May2001. (TESLA)TheSuperconductingelectronpositronlinearcolliderwithanintegratedX-raylaserlaboratory.Technicaldesignreport,6parts,Ed.F.Richardetal.,DESY2001-011,ECFA2001-209,March2001. (JLC)N.Akasakaetal.,ACFALinearColliderWorkinggroup(K.Abeetal.)KEK-REPORT-2001-11,hep-ph/0109166.[2]J.E.Clendeninetal.,AIPConf.Proc.421,p.250. [3]V.E.BalakinandA.A.Mikhailichenko,PreprintINP79-85,Novosibirsk,1979.[4]TESLATDR,Part.2,see[1]. 10 [5]T.Hiroseetal.,Nucl.Instr.&Meth.A455(2000)15;T.Omori,TalkatLC02, Feb.5,2002,SLAC,Stanford,USA.[6]G.L.Kotkin,S.I.Polityko,V.G.Serbo,Nucl.Instr.&Meth.A405(1998)30.[7]G.L.Kotkin,H.Perlt,V.G.Serbo,Nucl.Instr.&Meth.A404(1998)430.[8]Ya.S.Derbenev,A.M.Kondratenko,E.L.Saldin,Nucl.Instr.&Meth.165(1979)15.[9]Yu.Bashmakov,E.Bessonov,Ya.Vazdik,Sov.Tech.Phys.Lett.1(1975),No.6, p.239(PizmaZhTP,v.1,No.11(1975)520).[10]R.Rossmanith,R.Schmidt,InternalReportDESYM-80/02(February1980).[11]A.P.Potylitsyn,physics/0001004. [12]A.P.Potylitsin,ReportpresentedattheICFABeamDynamicsWork-shoponLaser-BeamInteraction(June11–15,2001atStonyBrook,USA);http://nslserver.physics.sunysb.edu/icfa/Home.htm,physics/0203059.[13]J.E.Clendenin,SLAC-PUB-8465(July2000)andphysics/0008018;R.Assmann, F.Zimmerman,PolarizationissuesatCLICCERNSL-2001-064(2001);Linearcol-liderphysicsresourcebookforSnowmass2001Part4,hep-ex/0106058.[14]Ya.S.Derbenev,A.M.Kondratenko,E.L.Saldin,Nucl.Instr.&Meth.165(1979) 201.[15]V.B.Berestetskii,E.M.Lifshitz,L.P.Pitaevskii,Quantumelectrodynamics,Perga-monPress(SecondEnglishedition,1994).[16]M.Galynskii,E.Kuraev,M.Levchuk,V.Telnov,Nucl.Instr.&Meth.A472(2001) 267. 11 因篇幅问题不能全部显示,请点此查看更多更全内容