经济计量学实习报告
1
影响我国农村居民消费水平的主要因素分析
【摘要】:本文主要通过对农村居民消费水平的变动进行多因素分析,建立以农村居民消费水平为应变量,以农村人口自然增长率、农村居民人均可支配收入、商品零售价格指数以及农业生产资料价格指数为自变量的多元线性回归模型,并利用模型对农村居民消费水平这一社会现象进行数量化分析,揭示中国农村消费水平的现状及问题,并对如何提高农村居民消费水平提出一些可行性的建议。
【关键词】:农村居民消费水平、农村人口自然增长率、农村居民人均可支配收入、商品零售价格指数、农业生产资料价格指数、建议
前言:
当前全球面临60 年来最严重的金融危机之后的经济复苏期,而中国亦深受当前经济时势影响,外贸出口难度加大。我国地域辽阔,经济发展不平衡,人民生活由温饱向小康过渡,无论是市场容量还是未来发展,扩大内需的潜力都十分巨大。此外,当前工业化,城市化,现代化进程加快,经济结构调整升级,国内市场的需求进一步扩大。所以,对我国这样一个发展中大国来说,拉动经济增长的最主要力量仍然是国内需求, 而扩大国内需求的一个重要举措是刺激国内消费。而农民作为中国广大的消费群体,其消费水平和消费需求的变化直接关系到内需的的效果。目前,农民的经济状况仍然保持在“温饱有余、小康不足”的状态。“许多农民消费仍然不足,这已经影响到整个国民经济的健康发展。因此研究中国农村居民消费水平,对于我国制定、完善经济,改善消费结构,促进消费水平,提高农民消费质量有重要的意义。
一、数据整理以及模型预测
影响我国农村居民消费水平的主要因素分析 农村居民农村人口自农村居民人均消费水平然增长率可支配收入X2商品零售价格农业生产资料Y(元) X1 (元) 指数X3 价格指数X4
349 14.26 397.6 108.8 104.8 378 15.57 423.8 106 101.1 421 16.61 462.6 107.3 107 509 15.73 4.9 118.5 116.2 9 15.04 601.5 117.8 118.9 560 14.39 686.3 102.1 105.5 602 12.98 708.6 102.9 102.9 688 11.6 784 105.4 103.7 805 11.45 921.6 113.2 114.1 1038 11.21 1221 121.7 121.6 1313 10.55 1577.7 114.8 127.4 1626 10.42 1926.1 106.1 108.4
2
年份
1985 1986 1987 1988 19 1990 1991 1992 1993 1994 1995 1996
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 1722 1730 1766 1860 1969 2062 2103 2301 2560 2847 3265 3756 4250 10.06 9.14 8.18 7.58 6.95 6.45 6.01 5.87 5. 5.28 5.17 5.08 5.05 2090.1 2162 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4 32.9 3587 4140.4 4760.6 5153 100.8 97.4 97 98.5 99.2 98.7 99.9 102.8 100.8 101 103.8 105.9 101.4 99.5 94.5 95.8 99.1 99.1 100.5 101.4 110.6 108.3 101.5 107.7 120.3 97.5
数据来源:2009年《中国统计年鉴》
根据上面的数据我们初步预测模型: Y=B0+B1*X1+B2*X2+B3*X3+B4*X4+U 其中:
Y——农村居民消费水平 X1——农村人口自然增长率 X2——农村居民人均可支配收入 X3——商品零售价格指数 X4——农业生产资料价格指数 U——随机误差项
二、模型设定
⒈回归模型参数估计
根据数据用Eviews软件对模型进行OLS估计,得样本回归方程。结果如下:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 20:48 Sample: 1985 2009 Included observations: 25
Variable C X1 X2 X3 X4
R-squared
Coefficient -207.4927 -0.741585 0.798672 7.903524 -5.4371
Std. Error 163.47 5.9603 0.015160 3.106204 2.110245
t-Statistic -1.269252 -0.124419 52.68433 2.4431 -2.584709
Prob. 0.21 0.9022 0.0000 0.0193 0.0177 11.160
0.998772 Mean dependent var
3
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
0.998526 S.D. dependent var 42.04608 Akaike info criterion 35357.46 Schwarz criterion -126.1533 F-statistic 1.025801 Prob(F-statistic)
1095.098 10.49227 10.73604 4065.108 0.000000
经过上述的初步回归分析,表明了最小的二乘估计的性质,证明了最小二乘法准则的合理性,但仍然不能完全保证现行回归分析的价值。原因是,模型本身未必一定满足要求,也就是模型的各个假设并不一定成立。最终的结果为: ?i = -207.4927-0.741585*X1+0.798672*X2+ 7.903524*X3-5.4371*X4 t= (-1.269252) (-0.124419) (52.68433) (2.4431) (-2.584709)
R2=0.998772 R2=0.998526 DW=1.025801 F=4065.108
⒉模型检验:
①经济意义检验:从得出的模型看,X1和X4的参数符号没通过经济意义检验。 ②R2检验:经计算此模型的可决系数R2=0.998772,校正的可决系数?R2=0.998526,表明模型拟合度高。
③t检验:再从五个参数的t检验值看,五个参数的t值分别为:t0=-1.269252, t1=-0.124419, t2=52.68433, t3=2.4431, t4=-2.584709 ,在5%显著性水平下自由度为n-k=25-5=20的t分布临界值为2.086,因此可知有部分t值是不显著的。
④F检验:模型的F值为:F=4065.108,而5%显著性水平下自由度分别为k-1=4和n-k=20的F分布临界值远小于模型的F值,说明模型在总体上是高度显著的。
下面进行相关检验说明模型中可能存在多重共线性等问题,进而对模型进行修正。
三、模型的检验和修正 1.多重共线性检验:
Y
Y 1
X1 44
X1
-0.9081173817
44
X2
0.99915135031-0.9113872994
8
X3
82 1
X2 8
X3 5
X4 36
-0.90811738170.99915135031-0.4571359137-0.1609798294
-0.91138729940.5581729280.231994327
82 1
7
9
-0.4632976258-0.15683528
12 1
96 0.83752018606
7 1
-0.45713591370.558172928-0.4632976258
5
7
12
X4 -0.16097982940.231994327-0.156835280.83752018606
36
9
96
7
由上表可知,X1与X2相关系数高达0.9114,X4与X3相关系数高达0.8375,结合
4
经济意义和统计检验选出拟合效果最好的一元线性回归方程。 多重共线修正处理:
(1)采用逐步回归: 运用OLS方法求y对各个解释变量的回归。结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。Eviews过程如下
Y对X1回归:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 20:50 Sample: 1985 2009 Included observations: 25
Variable C X1
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient 4168.325 -256.2840
Std. Error 260.4010 24.63966
t-Statistic 16.00733 -10.40128
Prob. 0.0000 0.0000 11.160 1095.098 15.21313 15.310 108.1866 0.000000
0.824677 Mean dependent var 0.8170 S.D. dependent var 468.3967 Akaike info criterion 5046096. Schwarz criterion -188.11 F-statistic 0.281126 Prob(F-statistic)
Y对X2回归: Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 20:50 Sample: 1985 2009 Included observations: 25
Variable C X2
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient 57.44743 0.787635
Std. Error 16.43924 0.006770
t-Statistic 3.494530 116.3344
Prob. 0.0020 0.0000 11.160 1095.098 10.57511 10.67262 13533.69 0.000000
0.998303 Mean dependent var 0.998230 S.D. dependent var 46.07673 Akaike info criterion 48830.50 Schwarz criterion -130.18 F-statistic 1.178851 Prob(F-statistic)
Y对X3回归: Dependent Variable: Y Method: Least Squares
5
Date: 01/15/11 Time: 20:50 Sample: 1985 2009 Included observations: 25
Variable Coefficient Std. Error t-Statistic Prob. C 9234.553 3086.927 2.991503 0.0065 X3
-72.13117
29.26236
-2.4982
0.0216 R-squared
0.2073 Mean dependent var 11.160 Adjusted R-squared 0.174581 S.D. dependent var 1095.098 S.E. of regression 994.9247 Akaike info criterion 16.71983 Sum squared resid 22767128 Schwarz criterion 16.81734 Log likelihood -206.9979 F-statistic 6.076134 Durbin-Watson stat
0.212411 Prob(F-statistic)
0.021595
Y对X4回归:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 20:51 Sample: 1985 2009 Included observations: 25
Variable Coefficient Std. Error t-Statistic Prob. C 3798.657 2766.947 1.372870 0.1830 X4
-20.22098
25.85028
-0.782234
0.4421 R-squared
0.025915 Mean dependent var 11.160 Adjusted R-squared -0.0137 S.D. dependent var 1095.098 S.E. of regression 1104.061 Akaike info criterion 16.92800 Sum squared resid 28035877 Schwarz criterion 17.02551 Log likelihood -209.6000 F-statistic 0.6110 Durbin-Watson stat
0.062338 Prob(F-statistic)
0.442056
从上述四个表格分析可以得出:Y对X2的线性关系强,拟合程度最优,则有回归方程:Y=57.44743+0.787635*X2
(2)逐步回归,将其余解释变量逐一代入上式
引入X1:
Dependent Variable: Y Method: Least Squares Date: 01/16/11 Time: 01:33 Sample: 1985 2009 Included observations: 25
6
Variable
C X1 X2
R-squared
Coefficient
-4.863096 4.159691 0.798224
Std. Error
90.75772 5.956229 0.016637
t-Statistic
-0.053583 0.698377 47.97770
Prob.
0.9578 0.4923 0.0000
11.160 1095.098 10.63318 10.77945 10.67375 1.185921
0.998340 Mean dependent var 0.9981 S.D. dependent var 46.59859 Akaike info criterion 47771.43 Schwarz criterion -129.9148 Hannan-Quinn criter. 6616.374 Durbin-Watson stat 0.000000
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
引进X3:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 20:53 Sample: 1985 2009 Included observations: 25 Variable C X2 X3
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -69.993 0.790317 1.1583
Std. Error 170.5280 0.007713 1.3933
t-Statistic -0.410225 102.4607 0.750669
Prob. 0.6856 0.0000 0.4608 11.160 1095.098 10.62982 10.77609 6638.706 0.000000
0.998346 Mean dependent var 0.998195 S.D. dependent var 46.52028 Akaike info criterion 47611.00 Schwarz criterion -129.8728 F-statistic 1.209349 Prob(F-statistic)
引进X4
Dependent Variable: Y Method: Least Squares Date: 01/16/11 Time: 01:34 Sample: 1985 2009 Included observations: 25
Variable
C X2 X4
Coefficient 117.3086 0.787092 -0.550827
Std. Error 121.8583 0.006970 1.110709 7
t-Statistic 0.9626 112.9178 -0.495923 Prob. 0.3462 0.0000 0.6249
0.998322 Mean dependent var 0.998170 S.D. dependent var 46.85115 Akaike info criterion 48290.66 Schwarz criterion -130.0499 Hannan-Quinn criter. 65.116 Durbin-Watson stat 0.000000
11.160 1095.098 10.399 10.79026 10.68456 1.113382
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
经上面的分析,再次依据调整后的可决系数最大原则,选取调整后可决系数最
大所对应的解释变量作为新进入模型的候选变量,将这个候选变量的调整后可决系数与上一步中进入模型解释变量的调整后可决系数加以比较,若是大于上一步的调整后可决系数,则将候选变量加入模型,若是小于,则将停止逐步回归。经查X3的调整后可决系数最大,故X3作为第二个解释变量进入回归模型。
(3)继续逐步回归
加入X1
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 22:43 Sample: 1985 2009 Included observations: 25
Variable C X1 X2 X3 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -82.114 2.8744 0.797047 0.878468 Std. Error 176.0244 6.528112 0.017073 1.695021 t-Statistic -0.4619 0.444040 46.686 0.5182 Prob. 0.40 0.6616 0.0000 0.6097 11.160 1095.098 10.70048 10.550 42.362 0.000000
0.998361 Mean dependent var 0.998127 S.D. dependent var 47.39305 Akaike info criterion 47168.13 Schwarz criterion -129.7559 F-statistic 1.202271 Prob(F-statistic)
加入X4 Dependent Variable: Y Method: Least Squares Date: 01/16/11 Time: 01:35 Sample: 1985 2009 Included observations: 25
Coefficient
-209.1116 0.800279
Std. Error
159.0920 0.007746
8
t-Statistic
-1.314407 103.3155
Prob.
0.2029 0.0000
Variable
C X2
X3 X4
R-squared
7.755861 -5.392331
2.802438 2.001844
2.7671 -2.693682
0.0115 0.0136
11.160 1095.098 10.41304 10.60806 10.46713 1.013575
0.998771 Mean dependent var 0.998595 S.D. dependent var 41.04865 Akaike info criterion 35384.83 Schwarz criterion -126.1630 Hannan-Quinn criter. 5686.745 Durbin-Watson stat 0.000000
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
根据上面的表格可知,由于,此次调整后可决系数最大的是X4,但与上一步的调整后可决系数相比要小,故可以认为逐步回归终止。由于在这里加入X4这个变量对于R2影响几乎不可计算,因此在这里不将X4放入模型。 故修正后的模型是:
Y= -207.4927 +0.798672*X2+ 7.903524*X3
Y——农村居民消费水平
X2——农村居民人均可支配收入 X3——商品零售价格指数 X4——农业生产资料价格指数
2.异方差检验
异方差分析:G-Q检验:去除中间3个数据,剩下22个数据,此时自由度为11-2-1=8,查表的出临界值F0.05(9,9)=3.18 对X2进行排序可得:
子样一:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 21:01 Sample: 1 11
Included observations: 11
Variable C X2 X3
Coefficient -192.9032 0.794236 2.230831
Std. Error 76.94086 0.013501 0.726876
t-Statistic -2.507162 58.82811 3.069068
Prob. 0.0365 0.0000 0.01
9
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
0.998177 Mean dependent var 0.997722 S.D. dependent var 14.101 Akaike info criterion 1590.829 Schwarz criterion -42.96596 F-statistic 1.5104 Prob(F-statistic)
655.63 295.4225 8.357447 8.465963 2190.440 0.000000
子样二:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 21:02 Sample: 15 25
Included observations: 11
Variable C X2 X3
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient 2656.866 0.848201 -27.733
Std. Error 9.4440 0.023694 9.499651
t-Statistic 2.9539 35.79868 -2.925300
Prob. 0.0183 0.0000 0.0191 2612.636 826.3828 10.85117 10.95969 1414.368 0.000000
0.997180 Mean dependent var 0.9975 S.D. dependent var 49.06500 Akaike info criterion 19258.99 Schwarz criterion -56.68143 F-statistic 1.081785 Prob(F-statistic)
从上两个表格求得:F1=19258.99/1590.829=12.10
对X3进行排序:
子样一:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 21:04 Sample: 1 11
Included observations: 11
Variable C X2 X3
R-squared
Coefficient 65.70332 0.814236 -0.723516
Std. Error 1048.560 0.015959 10.59494
t-Statistic 0.062661 51.02052 -0.0682
Prob. 0.9516 0.0000 0.9472 2129.909
0.997069 Mean dependent var
10
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
0.996336 S.D. dependent var .88365 Akaike info criterion 24097.72 Schwarz criterion -57.91420 F-statistic 1.807882 Prob(F-statistic)
906.7206 11.07531 11.18383 1360.681 0.000000
子样二:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 21:06 Sample: 15 25
Included observations: 11
Variable C X2 X3
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -69.27762 0.779843 1.282333
Std. Error 161.13 0.006715 1.424073
t-Statistic -0.429934 116.1315 0.900469
Prob. 0.6786 0.0000 0.3942 1039.273 9.7291 9.591129 9.6996 7168.785 0.000000
0.999442 Mean dependent var 0.999303 S.D. dependent var 26.13108 Akaike info criterion 62.668 Schwarz criterion -49.75121 F-statistic 2.490933 Prob(F-statistic)
根据上两表求得:F2=24097.72/62.668=4.41
因为F1>F2>F0.05(9,9)=3.18 ,所以模型存在异方差。需要对其进行修正。
异方差修正:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 21:09 Sample: 1985 2009 Included observations: 25 Weighting series: 1/ABS(EL)
Variable C X2 X3
Weighted Statistics
Coefficient -100.4213 0.787557 1.463236
Std. Error 18.87623 0.002494 0.180878
t-Statistic -5.3199 315.8142 8.0613
Prob. 0.0000 0.0000 0.0000
11
R-squared
0.999957 Mean dependent var 3.7122 Adjusted R-squared 0.999953 S.D. dependent var 1198.539 S.E. of regression 8.227519 Akaike info criterion 7.165013 Sum squared resid 14.225 Schwarz criterion 7.311278 Log likelihood -86.56266 F-statistic 93346.88 Durbin-Watson stat 1.292238 Prob(F-statistic) 0.000000 Unweighted Statistics
R-squared
0.998310 Mean dependent var 11.160 Adjusted R-squared 0.998156 S.D. dependent var 1095.098 S.E. of regression 47.02431 Sum squared resid 488.29 Durbin-Watson stat
1.198471
所以,修正后的模型为: Y =-100.4213+0.787557*X2+1.463236*X3
t=(-5.3199) (315.8142) (8.0613) R2=0.999957 F=93346.88
3.自相关性检验:
Dependent Variable: Y Method: Least Squares Date: 01/15/11 Time: 20:53 Sample: 1985 2009 Included observations: 25
Variable Coefficient Std. Error t-Statistic Prob. C -69.993 170.5280 -0.410225 0.6856 X2 0.790317 0.007713 102.4607 0.0000 X3
1.1583
1.3933
0.750669
0.4608 R-squared
0.998346 Mean dependent var 11.160 Adjusted R-squared 0.998195 S.D. dependent var 1095.098 S.E. of regression 46.52028 Akaike info criterion 10.62982 Sum squared resid 47611.00 Schwarz criterion 10.77609 Log likelihood -129.8728 F-statistic 6638.706 Durbin-Watson stat
1.209349 Prob(F-statistic)
0.000000
查表可得其临界值为:Dl=1.21 , Du=1.55 ,此时,D.W=1.209349<Dl=1.21 此可见,模型存在正自相关。4-Du=2.45 自相关修正:
Dependent Variable: Y
12
由
Method: Least Squares Date: 01/16/11 Time: 02:55 Sample(adjusted): 1996 2009
Included observations: 14 after adjusting endpoints Convergence achieved after 10 iterations
Variable C X2 X3 AR(11)
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Inverted AR Roots
Coefficient 98.85510 0.791456 -0.431140 -1.869081
Std. Error 124.4509 0.005119 1.143078 0.5681
t-Statistic 0.794330 1.6068 -0.377174 -3.299460
Prob. 0.44 0.0000 0.7139 0.0080 2415.500 824.10 10.30423 10.48682 2126.378 0.000000 .69 -.80i -.44 -.96i
0.998435 Mean dependent var 0.997965 S.D. dependent var 37.17727 Akaike info criterion 13821.50 Schwarz criterion -68.12960 F-statistic 2.452390 Prob(F-statistic) 1.02+.30i 1.02 -.30i .15+1.05i .15 -1.05i -.+.57i
-. -.57i
.69+.80i -.44+.96i -1.06
Estimated AR process is nonstationary
根据以上表格可知:Du <D.W<4-Du ,此时不存在自相关,估计模型为: Y*=98.85510/(1+1.869081)+ 0.791456*x*2-0.431140*x*3
四: 模型的分析与说明:
从最终的估计模型Y*=98.85510/(1+1.869081)+ 0.791456*x*2-0.431140*x*3中我们可以明显的知道农村居民消费水平的主要决定因素还是农村居民的人均可支配收入,另外的,商品零售价格指数也会对农村居民消费水平造成一定程度的影响。 因此要发展农村经济、提高农民收入,提高农村居民的消费水平,一是加快农业结构调整步伐,提高农村经济组织化程度。二是进一步完善农村土地承包制,加快土地流转制度改革。按照依法自愿有偿原则,允许农民以转包、出租、互换、转让、股份合作等形式流转土地承包经营权,发展多种形式的适度规模经营。三是减轻农民负担,加快农村费改税工作进程。四增加对农业的战略性投资。五是加快小城镇建设,大力发展各种非农业生产。六是国家要注重区域间的均衡发展。七是加强农民工再培训计划,八是稳定我国商品价格,保证农村居民可以满足自己的消费愿望。希望通过这些渠道来增加我国农村居民的消费水平,切实做到提高农村居民的生活水平。
13
参考文献
[1] 陈阿兴,王亮. 我国农村居民消费状况的实证分析[J].科技咨询 导报,2007, (03).
[2]高鸿业:《西方经济学》宏观部分.中国人民大学出版社,2000
[3]郑春梅,孙颖,范丙文.中国农民消费特征实证分析[J].经济问题, 2008 ,(03).78-80
[4]《新中国60周年统计年鉴》
14
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- shangjiatang.cn 版权所有 湘ICP备2022005869号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务