搜索
您的当前位置:首页正文

Persistence in systems with algebraic interaction

来源:尚佳旅游分享网
Persistenceinsystemswithalgebraicinteraction

IaroslavIspolatov

DepartmentofPhysics,McGillUniversity,3600rueUniversity,Montr´eal,Qu´ebec,H3A2T8,Canada

and

ChemistryDepartment,BakerLaboratory,CornellUniversity,Ithaca,NY14853,USA

(February1,2008)Persistenceincoarsening1Dspinsystemswithapowerlawinteractionr−1−σisconsidered.Numericalstudiesindicatethatforsufficientlylargevaluesoftheinteractionexponentσ(σ≥1/2inoursimulations),persistencedecaysasanalgebraicfunctionofthelengthscaleL,P(L)∼L−θ.ThePersistenceexponentθisfoundtobeindependentontheforceexponentσandclosetoits

¯=0.17507588....Forsmallervaluesoftheforceexponentvaluefortheextremal(σ→∞)model,θ

(σ<1/2),finitesizeeffectspreventthesystemfromreachingtheasymptoticregime.Scalingargumentssuggestthatinordertoavoidsignificantboundaryeffectsforsmallσ,thesystemsizeshouldgrowas[O(1/σ)]1/σ.

PACSnumbers:02.50.Ga,05.70.Ln,05.40.+j

arXiv:cond-mat/9811196v1 [cond-mat.stat-mech] 13 Nov 1998Coarseningdynamicsofone-dimensionalsystemswithapower-lawV(r)∼r−σ−1interactionbetweenspinshasrecentlybeenstudiedbyLeeandCardy[1],andRuten-bergandBray[2].Ithadbeenestablishedthatafterquenchingfromahigh-temperaturedisorderedphasetoT=0thesesystemsdevelopadomainstructurecharac-terizedbyasinglelengthscaleL(t).Anaiveargument

˙∼L−σbasedonthelawofmotionfordomainwalls,L

(whereL−σisatypicalforcebetweendomainwalls),pro-ducesanasymptoticallycorrecttimedependenceofL,

L(t)∼t1/1+σ.

(1)

Otherpropertiesofthissystem,includingcorrelationfunctionsanddomainsizedistribution,havebeenstudiedin[2]aswell.

Inthispaperweshalllookatanotherfacetof1Dphase-orderingsystemswithapower-lawinteraction:whatfractionPofspinshaveneverchangedsignuptothetimet?Or,equivalently,whatfractionofthespacehasneverbeencrossedbyadomainwall?Suchapropertyofcoarseningsystemsisusuallycalledpersistenceandhasrecentlybecomeamajorsubjectofresearchinstatisticalphysics[3–7].Letusbrieflyreviewsomeknownresultsinthisfieldrelevanttoourproblem.In[3]theexactsolutionwasfoundforpersistenceinanorderingsystemwithextremaldynamics.Theextremaldynamicslimitisreachedbyformallysettingσ→∞,whichmeansthatinteractionsbecomeinfinitelyshort-range.Inthislimit,coarseningproceedsbyconsecutiveshrinkinganddisap-pearanceofthecurrentsmallestdomainsinthesystem,whileotherdomainboundariesremainvirtuallymotion-less.Itwasestablishedin[3]thatpersistenceatastageofevolutionwhentheaveragedomainsizeisLispropor-¯¯=0.17507...isthetionaltoLθ,wheretheexponentθ

solutionofanimplicitintegralequation.

In[4]persistenceexponentshavebeencalculatedforcoarsening1DPottsmodelswithGlauberdynamics.Forthe2-statePotts(Ising)model,persistencedecaysast−θ,θ=3/8,orintermsoftheaveragedomainsizeL,P(L)∼L−3/4.

1

Thefollowingconclusioncanbedrawnfromacompar-isonofpersistenceexponentsforextremalandGlauberdynamics.Extremaldynamicsismoreefficientinpre-servingpersistence,sincethemotionofdomainwallsisalwaysdirectedtowardstheirultimateannihilationpart-ners,whileinthecaseofGlauberdynamics,domainwallsperformrandomwalksandsweepthroughalargeramountofspace,whichotherwisecouldhaveremained

¯setsapersistent.Theextremaldynamicsexponentθ

lowerboundonpersistenceexponentsforsystemswithafiniteforceexponentσ.Itiseasytovisualizeascenariowhenadomainwallfirstmovesawayfromitsultimateannihilationpartner,andthen,afterthestrongerforcesourcedisappears,itturnsback.Sucheventsresultinspinflipsonpartsofthelinethatbelongtoasurviv-ingdomainandwouldhavebeenleftuntouchedintheextremaldynamicscase.

Theresultspresentedbelowsuggestthatthislower

¯=0.17507...isinfacttheexactvalueoftheboundaryθ

persistentexponentforarbitraryσ>0.

Letusformallyintroduceourmodel:Weconsidercoarseningofthe1D2-statespinsystemwithalong-rangeferromagneticHamiltonian:

H=

−4

(xi−xj)

σ+1.

(2)

Afterquenchingfromahigh-temperaturerandomphasetoT=0,coarseningdynamicsforthissystemisdeter-minedbythemotionofdomainwalls,governedbytheLangevinequation.Thevelocityofawallisequaltothesumofpairwiseforcesfromotherwalls,withwallsofthesamesignsrepellingandwallsoftheoppositesignsattractingeachother:

dri

|ri−rj|

σ.

(4)

Whentheadjacentwallsmeet,theyannihilate.Aswementioned,thedegreeofcoarseningisuniquelycharac-terizedbyatypicaldomainsizeL(t)∼t1/(1+σ).WemeasurethefractionofspaceP(L)thathasneverbeencrossedbyasingledomainwallasafunctionofthislengthscaleL(t).Weperformmoleculardynamicssimu-lationsofthemodelforthefollowingvaluesoftheforceexponent:σ=3/2,5/4,1,3/4,1/2,1/4.EachrunstartswithasystemconsistingofN0=100000domainwalls;resultsforeachσareaveragedover20initialconfigura-tions.Openboundaryconditionswithnoreplicasaddedtotheboundariesareused.Tospeeduptheevaluationofforces,a1Dmultipoleexpansionhasbeenperformed,andtermsofuptoquadrupoleorderweretakenintoac-count[8].

1

)L(Pσ=1/4σ=1/2σ=3/4σ=1σ=5/4σ=3/2L**−0.175

0.110

0

10

1

10

2

103

10

4

10

5

L

Fig.1.Thelog-logplotofpersistenceP(L)vs.averagedo-mainsizeLforvariousforceexponentsσ.Thestraightline

correspondstoP(L)∼L−¯

θ.

TheresultsforpersistenceasafunctionoftheaveragedomainlengthLarepresentedinlog-logforminFig.1.Exceptforsmallforceexponents(σ=1/4andlaterevo-lutionstagesforσ=1/2)allthecurvescollapseatalinewithaslope≈−0.175,whichcorrespondstoσ=∞extremalmodel.

StatisticalerrorbarsareshowninFig.2forasinglesetofdata(σ=5/4).

Oursimulationssuggeststhatscalingofpersistence,correspondingtoσ=∞,isvalidforallothernotverysmallσ.Thefollowingasymptoticargumenthelpstoun-derstandwhythisisso.Atanycurrentmomentoftime,persistentspinsaremostlycontainedinthedomainsthatwereexpandingatalmostallpreviousstagesofcoarsen-ing;i.e.thesedomainswerelargerthantheaverageatthosestages.Ifoneofsuchlargedomainsissurroundedbytwosmallneighbors,itwouldmostprobablygrowout-wards,andnospinflips,additionaltothoseinevitablycausedbydirectedcoarseningitself,wouldhappen.Thesituationmaybedifferentiftwoorthreebigdomainsareadjacenttoeachother:theirdomainwallsmaywonder

andgetinsidetheterritoryofthefuturesurvivor,causingsomeexcessivespinflips.

−0.2

]−0.4

)L(P[gl−0.6

−0.8

σ=5/4

−1.0

0.0

1.0

2.0

3.04.05.0

lg(L)

Fig.2.Thelog-logplotofpersistenceP(L)vs.averagedo-mainsizeLforceexponentsσ=5/4withstatisticalerror

bars.ThestraightlinecorrespondstoP(L)∼L−¯

θ.

Wecanestimatethecharacteristicscaleofsucha

persistence-loosingevent.Atypicaldistance∆LthatawallofdomainofsizeL0,surroundedbyagroupofdomainsofsimilarsizes,travelsduringtimetis

∆L∼L0−(L(1+σ)

0

−t)1/1+σ≈L(t)[

L(t)

L0

≫1,hencethenumberofspinflipsaddi-tionaltothosepresentinextremaldynamicscoarseningscenariobecomesnegligible.Anotherconclusionthatfol-lowsfromEq.(5)isthatforsmallσ,thecrossovertimeto

P(L)∼Lθ¯

scalingmustbelargersincethesystemmustdevelopstructurethatincludessufficientlylargedomains.However,besideslongintitialtransitionaltimes,thereisanotherreasonforthebreakdownofscalingforsmallσthatweobservedinoursimulations.Letusfirstconsidertheoppositetoσ=∞caseofσ=0.Inthislimitforces,aredistance-independent,anddomainwalldynamics(3)isdescribedbytheequation

dri

domainlengthandv=1isthevelocityofdomainwalls.Foranexponentialdistributionofinitialdomainsizes,W(L0)=exp(−L0),persistencecanbeexpressedas

󰀁∞󰀁∞

W(x)dx+2vtW(x)dx˜(t)=0(7)P

2Systemswithfewparticlesandsmallσcoarsenalmostaccordingtotheσ=0scenario:particlesacrossthewholesystemfeelthepresenceoftheboundary.Oddandeven-numberwallstendtomovepredominantlytotheleftandright,respectively,independentoftheposi-tionoftheirnearestneighbors.

¯

ToprobewhetherthedeviationfromP(L)∼Lθscal-inginpersistencebehavioriscausedbyσ=0finitesizeeffects,wedothefollowingmeasurements.First,forthesystemofthesameinitialsize(N=105)weplottheaveragedomainlengthL(t)asafunctionoftimeandcompareittotheL∼t1/1+σprediction.

thatoursystemisneverinthetrueinfinite-sizeregimeforσ=1/4,finitesizeeffectsarebecomingevidentforσ=1/2,evenatearlystagesofevolution,andonlyforσ≥3/4theboundaryeffectscouldbeneglected.

0.8

σ=1/4σ=1/2σ=3/4σ=1σ=5/4σ=3/2

0.6

B(L)0.4

0.2

0010

10

1

10

210L

3

10410

5

10

4

σ=1/4σ=1/2σ=3/4σ=1σ=5/4σ=3/2

Fig.4.NumberofdomainwallsB(L)thatmoveoppositetothedirectionprescribedbyboundaryeffectsvs.averagedomainlengthLforvariousforceexponentsσ.

10

2

Finally,wepresentaroughestimateofhowbigasys-temshouldbeforaparticularvalueofσ≪1toavoidsignificantfinite-sizeeffects.WeevaluateaforceF1−2,exertedonatestdomainwallbyadipolepairofneigh-boringdomainwalls,

F1−2≈(

1

2L

σ

L(t)10

0

−327)=(

1

101010

t

Fig.3.Thelog-logplotofaveragedomainsizeL(t)vs.timeforvariousforceexponentsσ.Straightlinescorrespondtoscalingpredictions,L(t)∼t1/1+σ.

σ

NL

).(9)

ResultsforthissimulationarepresentedinFig.3.Onecanseethatthesystemwithσ=1/4isneverinscalingregime(1),systemwithσ=1/2behavesaccordingto(1)onlyuptosomeintermediatestageofevolution.Forallotherforceexponentsσ>1/2,foracertainperiodofevolutionaftershorttransitionaltime,typicaldomainsizesscaleaccordingto(1).Anothercheckofwhetherasystemfeelsthepresenceoftheboundariesandthere-forecrossesovertotheσ=0coarseningregime,istomeasuredirectlythefractionofdomainwallsB(L)thatmoveoppositetothedirectionprescribedbyboundaryeffects.InFig.4weplotthefractionofeven-numberdo-mainwallsmovingtotherightandodd-numberdomainwallsmovingtotheleftforthesystemsinitiallyconsist-ingofthesamenumberofdomains,N=105.Forfiniteσ>0andatrulyinfinitesystemthisfractionshouldbeequalto1/2,forσ=0itshouldbe0.Weobserve

3

HereLandNarethetypicaldomainlengthandthenumberofdomainsinthesystem.Theboundaryeffectsbecomesignificantwhentheseforcesareofthesameor-der.Henceforparticularσ,theminimumnumberofparticlestoavoidfinitesizeeffectsNminis

Nmin≈2(

1

σ

(10)

Wehaveobserved(seeFig.4)thatforσ=1/2,Nmin≈105.Assumingthefollowingparameterizationofminimal

1/σ

sizeofthesystemforsmallσ,Nmin=(constant/σ)andfittingittoNmin(σ=1/2)=105,weobtainNmin(σ=1/4)≈1.6×1011.Thisiswellbeyondthelimitsofcomputationalpoweravailabletous.

Insummary,wepresentednumericalevidenceandascalingargumentsuggestingtheuniversalityofpersis-¯=0.17507588...,tentexponentforextremalmodel,θ

formodelswitharbitraryforceexponentsσ>0.Wefoundthatadeviationfromscalingforpersistence,thathappensforsmallσ,isaccompaniedbyasimilarde-viationfromscalingforatypicaldomainsizeL(t)andiscausedbyfinitesizeeffectsthatcausecrossovertoaσ=0coarseningscenario.Weestimatedthatinordertoavoidboundaryeffects,thesystemsizeshouldgrowas[O(1/σ)]1σ.Apossibleextensionofthisworkisforhigherdimensionalsystems,thoughthedualitybetweendomainwallsandspindynamicsthatwasextensivelyusedforthiswork,maynotbesostraightforwardtoapply.

TheauthorwouldliketothankP.Krapivsky,A.Rutenberg,A.Hare,andR.Hillforinterestingdiscus-sions.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top