您好,欢迎来到尚佳旅游分享网。
搜索
您的当前位置:首页实际问题与二次函数—知识讲解(提高)

实际问题与二次函数—知识讲解(提高)

来源:尚佳旅游分享网


实际问题与二次函数—知识讲解(提高)

【学习目标】

1.能运用二次函数分析和解决简单的实际问题,培养分析问题、解决问题的能力和应用数学的意识. 2.经历探索实际问题与二次函数的关系的过程,深刻理解二次函数是刻画现实世界的一个有效的数学模型.

【要点梳理】

要点一、列二次函数解应用题

列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤:

(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系).

(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确.

(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.

(4)按题目要求,结合二次函数的性质解答相应的问题。 (5)检验所得解是否符合实际:即是否为所提问题的答案. (6)写出答案. 要点诠释:

常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.

要点二、建立二次函数模型求解实际问题

一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题. 要点诠释:

(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.

(2)对于本节的学习,应由低到高处理好如下三个方面的问题: ①首先必须了解二次函数的基本性质; ②学会从实际问题中建立二次函数的模型; ③借助二次函数的性质来解决实际问题.

【典型例题】

类型一、利用二次函数求实际问题中的最大(小)值

1. 某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖

情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x (月)满足关系式

3y1x36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.

8

(1)试确定b,c的值;

(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(不要求指出x的取

值范围)

(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? 【答案与解析】

(1)把(3,25),(4,24)代入y212xbxc中,得 815193bc25,b,88 解方程组得 1164bc24.c59.28(2)根据题意,得yy1y2155931x36x2x

8288311559 x36x2x88821313x2x.

82212313所以y与x的函数关系式为yxx.

822112(3)由(2)得,y(x6)11,因为a0,所以当x<6时,y随x的增大而增大,所

88以“五一”之前,四月份出售这种水产品每千克的利润最大,最大利润为10.5元.

【点评】在用二次函数知识解决实际问题时,有的同学易忽略自变量的取值范围,有的题目结果中的值

看上去有意义,但不一定符合题意,有的题目本身就隐含着对自变量的,常常考虑不周而造成错解. 举一反三:

【变式】某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不

高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如

图).

(1)求y与x之间的函数关系式;

(2)设公司获得的总利润为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?(总利润总销售额总成本)

(k≠0)【答案】(1)设y与x的函数关系式为:ykxb,

∵函数图象经过点(60,400)和(70,300)

k1040060kb∴ 解得

b100030070kb∴y10x1000

(2)P(x50)(10x1000)

P10x21500x50000(50≤x≤70)

b1500∵75,a10<0

2a20∴函数P10x21500x50000图象开口向下, 对称轴是直线x=75

∵50≤x≤70,此时y随x的增大而增大, ∴当x=70时,P最大值6000.

类型二、利用二次函数解决抛物线形建筑问题

2.某工厂大门是抛物线形水泥建筑,大门地面宽为4m,顶部距离地面的高度为4.4m,现有一辆满载货物的汽车欲通大门,其装货宽度为2.4m,该车要想过此门,装货后 的最大高度应是多少m?

【思路点拨】

因为校门是抛物线形,不妨将这一问题转化为二次函数进行研究,建立适当的直角坐标系,将

已知数据转化为点的坐标,从而确定函数关系式,再根据关系式求高.

【答案与解析】

解:建立如图平面直角坐标系: 设抛物线的解析式为y=ax2,

由题意得:点A的坐标为(2,﹣4.4),

∴﹣4.4=4a, 解得:a=﹣1.1,

∴抛物线的解析式为y=﹣1.1x2, 当x=1.2时,

y=﹣1.1×1.44=﹣1.584,

∴线段OB的长为1.584米, ∴BC=4.4﹣1.584=2.816米,

∴装货后的最大高度为2.816米, 故答案为:2.816米.

【点评】利用二次函数解决抛物线形建筑问题一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转

化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.

类型三、利用二次函数求跳水、投篮等实际问题

3. 如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮筐,已知篮筐中心到地面的距离为3.05 m,若该运动员身高1.8 m,在这次跳投中,球在头顶上方0.25 m处出手,问:球出手时,他跳离地面的高度是多少?

【答案与解析】

如图所示,在直角坐标系中,点A(1.5,3.05)表示篮筐,点B(0,3.5)表示球运行的最大高度,点C表示球员篮球出手处,其横坐标为-2.5,

2设C点的纵坐标为n,过点C、B、A所在的抛物线的解析式为ya(xh)k,由于抛物线开口向下,则点B(0,3.5)为顶点坐标,∴ yax3.5. ∵ 抛物线yax3.5经过点A(1.5,3.05), ∴ 3.05=a·1.5+3.5, ∴ a2

221. 512x3.5. 5 ∴ 抛物线解析式为y ∴ n(2.5)3.5,

∴ n=2.25.

∴ 球出手时,球员跳离地面的高度为2.25-(1.8+0.25)=0.20(米).

【点评】首先要建立适当的平面直角坐标系,构造函数模型,将已知数据转化为点的坐标,然后利用待

定系数法求出函数解析式,再利用解析式求出抛物线上已知横坐标的点的纵坐标,结合已知条件,得到实际问题的解.

152类型四、利用二次函数求图形的边长、面积等问题

4. 一条隧道的截面如图所示,它的上部是一个以AD为直径的半圆O,下部是一个矩形ABCD.

(1)当AD=4米时,求隧道截面上部半圆O的面积;

(2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米.

2

①求隧道截面的面积S(m)关于半径r(m)的函数关系式(不要求写出r的取值范围);

②若2米≤CD≤3米,利用函数图象求隧道截面的面积S的最大值.(π取3.14,结果精确到0.1米) 【思路点拨】

①根据几何图形的面积公式可求关于面积的函数解析式;

②利用二次函数的有关性质,在自变量的取值范围内确定面积的最大值. 【答案与解析】

(1)S半圆2(米2);

(2)①∵ AD=2r,AD+CD=8,∴ CD=8-AD=8-2r, ∴ S1211rADCDr22r(82r)4r216r. 222②由①知,CD=8-2r,又∵ 1.2米≤CD≤3米,

∴ 2≤8-2r≤3,∴ 2.5≤r≤3.

812由①知,S4r16r≈2.43r216r2.434. 2.432.432∵ -2.43<0,∴ 函数图象为开口向下的抛物线,函数图象对称轴r28≈3.3, 2.43又2.5≤r≤3,由函数图象知,在对称轴左侧S随r的增大而增大,故当r=3时,S有最大值.

11S最大432163≈3.144948≈26.1(米2).

22【点评】解此类问题,一般先应用几何图形的面积公式,写出图形的面积与边长之间的关系,再用配方法或公式法求顶点坐标,结合二次函数性质与自变量的取值范围确定最大面积.

举一反三:

【变式】如图,矩形纸片ABCD,AD=8,AB=10,点F在AB上,分别以AF、FB为边裁出的两个小正方形纸片面积和S的取值范围是 .

【答案】50≤S≤68.

【解析】解:设AF=x,则BF=10﹣x,由题意,得

S=x2+(10﹣x)2, S=2x2﹣20x+100, S=2(x﹣5)2+50. ∴a=2>0,

∴x=5时,S最小=50. ∵2≤x≤8,

当x=2时,S=68, 当x=8时,S=68. ∴50≤S≤68.

故答案为:50≤S≤68.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- shangjiatang.cn 版权所有 湘ICP备2022005869号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务